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ABSTRACT
In this paper, we present Sikker1, a high-performance dis-
tributed system architecture for secure service-oriented com-
puting. Sikker includes a novel service-oriented application
model upon which security and isolation policies are derived
and enforced. The workhorse of Sikker is a custom network
interface controller, called the Network Management Unit
(NMU), that enforces Sikker’s security and isolation poli-
cies while providing high-performance network access.

Sikker’s application model satisfies the complex interac-
tions of modern large-scale distributed applications. Our ex-
perimentation results show that even when implemented on
very large clusters, the NMU adds a negligible message la-
tency of 41 ns under realistic workloads and 66 ns at the 99th

percentile of worst case access patterns. Our analysis shows
that the NMU can easily support over 100 Gbps with a single
logic engine and that over 500 Gbps is achievable with more
aggressive designs.

Sikker’s service-oriented security and isolation mechanism
removes high overheads imposed by current systems. Sikker
allows distributed applications to operate in an environment
with fine-grained security and isolation while experiencing
supercomputer-like network performance.

1. INTRODUCTION
The number and variety of applications and services run-

ning in modern data centers, cloud computing facilities, and
supercomputers has driven the need for a secure computing
platform with an intricate network isolation and security pol-
icy. Traditionally, supercomputers focused on performance
at the expense of internal network security while data centers
and cloud computing facilities focused on cost efficiency,
flexibility, and TCP/IP compatibility all at the expense of
performance. In spite of their historical differences, the re-
quirements of these computing domains are beginning to
converge. With increased application complexity, data cen-
ters and cloud computing facilities require higher network
bandwidth and predictably low latency. As supercomputers
become more cost sensitive and are simultaneously utilized
1Sikker is a danish translation for “safe”

by many clients, they require a higher level of application
isolation and security. The advent of cloud-based supercom-
puting [3, 18] brings these domains even closer by merging
them onto the same network.

Operating under a single administrative domain allows
distributed systems to consider the network a trusted entity
and rely on its features. Supercomputers use this ideology to
achieve ultimate performance, however, they maintain min-
imal security and isolation mechanisms. In contrast, cloud
computing facilities achieve high levels of security and iso-
lation at the expense of much lower performance. In theory,
a single administrative domain could provide simultaneous
performance, security, and isolation as these are not funda-
mentally in opposition. The unfortunate truth is that modern
network technologies have not provided distributed systems
that are capable of supercomputer-like network performance
while simultaneously providing robust application security
and isolation. As a result, system designers and application
developers are forced to make trade-offs leaving deficiencies
in their system and creating high development and runtime
overheads.

In this paper, we present a new distributed system archi-
tecture called Sikker, that includes an explicit security and
isolation policy. The goal of this system is to provide the
highest level of network performance while enforcing the
highest level of application security and isolation required
by the complex interactions of modern large-scale applica-
tions. Sikker formally defines a distributed application as a
collection of distributed services with well-defined interac-
tion policies. Sikker utilizes specially architected network
interface controllers (NICs), called Network Management
Units (NMUs), to enforce application security and isolation
policies while providing efficient network access. Unlike
common NICs, NMUs operate directly under the control of
a system-wide Network Operating System (NOS), and as
such, are not vulnerable to compromises of individual host
operating systems.

This paper makes the following contributions:

• We present a new distributed system security and iso-
lation model that is built from a service-oriented ac-
cess control list methodology. This is the first work



to present a service-oriented network architecture and
process-oriented authentication.

• We show how modern large-scale applications fit into
this model and how they can be modified to make use
of it.

• We present the Network Management Unit, a high per-
formance network interface controller that, under the
direction of a Network Operating System, enforces the
security and isolation policies of Sikker.

• We provide an evaluation of Sikker and the NMU which
shows that it simultaneously provides high performance
network access and robust application security and iso-
lation.

The outline of this paper is as follows. In Section 2 we
discuss the motivation of Sikker in terms of performance
and application structure and propose a new methodology
for implementing access control. In Section 3 we describe
the Sikker architecture as an abstract system with strict re-
quirements and plentiful features. In Section 4 we present
the Network Management Unit as the device that enables
Sikker to operate as described with high performance. Sec-
tion 5 describes our evaluation methodology and Section 6
shows the evaluation results of Sikker and the NMU. Section
7 presents prior related work and in Section 8 we conclude.

2. MOTIVATION

2.1 Attainable Performance
The highest level of network performance available today

is found in supercomputing interconnection networks such
as Cray Cascade [14] and Gemini [1], IBM Blue Gene/Q
[12] and PERCS [5], and Mellanox InfiniBand [24]. These
interconnects achieve high bandwidth and predictably low
latency while incurring minimal CPU overhead. For exam-
ple, InfiniBand networks manufactured by Mellanox Tech-
nologies achieve round-trip times on the order of 2 µs and
bandwidths as high as 100 Gbps [24]. The Cray Cascade
system achieves unidirectional latencies as low as 500 ns and
provides 93.6 Gbps of global bisection bandwidth per node
[14]. In order to achieve our goal of high network perfor-
mance, we define our metrics for performance relative to the
highest performing interconnection networks.

One of the major strategies that supercomputers use to
achieve high performance is allowing applications to by-
pass the operating system and interact with the network in-
terface directly. This is called OS-bypass. All major high
performance computing fabrics (e.g. Cray, IBM, Mellanox,
Myricom, Quadrics) have taken this approach. Along with
providing lower and more predictable network latency, OS-
bypass provides lower CPU overhead as the kernel is freed of
the task of managing network interface sharing. CPU over-
head can be further reduced by offloading network transport
protocols to the network interface.

OS-bypass has one major ramification, namely, bypass-
ing the kernel (or hypervisor) removes its ability to monitor,
modify, rate limit, or block outgoing network traffic in an ef-
fort to provide sender-side security and isolation features as
is commonly performed in network virtualization software.
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Figure 1: High level service connectivity. Directed edges
show direction of functionality offering.

2.2 Service-Oriented Applications
Modern large-scale distributed applications are often com-

prised of thousands of processes. For reasons of manage-
ment, separation of development, modularity, and fault tol-
erance, these processes are grouped by similarity into collec-
tions called services. A service is a collection of processes
developed and executed for the purpose of implementing a
subset of an application’s functionality. Applications can be
comprised of one or more services, often tens or hundreds,
and services are often shared between many applications.
Figure 1 shows a simplified diagram of six services interact-
ing to fulfill the functionality of two user facing applications,
an email system and a blogging system. Each service has a
defined application programming interface (API) that it ex-
poses to provide functionality to other services. Even though
a modern data center might contain thousands of services,
each service generally communicates with a small subset of
the total services in order to fulfill its designed functionality.
Furthermore, it is common for a service to use only a portion
of another service’s API.

Figure 2 is a diagram created by Twitter to illustrate the
operation of their protocol-agnostic communication system.
Similarly, Figure 3 is a diagram created by Netflix illustrat-
ing their architecture on Amazon’s cloud computing plat-
form. For both of these designs, there exists several services
custom written for the application, as well as several ser-
vices written by third-parties. Both of these diagrams show
that when designing an application at a high level, appli-

Figure 2: Twitter’s Finagle RPC system[42].
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Figure 3: Netflix’s architecture on Amazon’s AWS [29].

cation developers divide the application’s functionality into
services with well-defined APIs to achieve modularity.

An inspection of the code of any given service would re-
veal the implicit interaction privileges it desires with other
services. In most cases, the code expressing the desired in-
teractions does not contain IP addresses or TCP port num-
bers, but instead contains service names, process identifiers,
permission domains, and API commands. For example, from
the Twitter example in Figure 2 we might see the Timeline
Service desiring to communicate with the Redis service us-
ing its process #6 and using API command Get.

2.3 Access Control
The implicit permissions, discussed in Section 2.2, de-

clared by each service present the ideal level at which per-
missions should be enforced as these permissions are derived
from the applications themselves and represent the actual in-
tent of the services on the network. The available security
and isolation techniques in today’s data centers use mul-
tiple layers of indirection before permissions are checked
and enforced. This creates high operational complexity and
overheads and presents many opportunities for misconfigu-
ration. These systems lose information about the original
intent of the application, thus, cannot enforce the permission
as it was intended. The lack of inherent identity authenticity
within the network forces developers to use authentication
mechanisms (e.g. cryptographic authentication) that incur
high CPU overhead and are unable to properly guard against
denial-of-service attacks due to the lack of isolation. In this
section, we will describe how current systems work and our
proposal for a better solution.

To moderate network access, modern network isolation
mechanisms use access control lists (ACLs). In the abstract
form, an ACL is a list of entries each containing identifiers
corresponding to a communication mechanism and represent
a permissions whitelist. For access to be granted, each com-
munication must match on an entry in the ACL. The most
common type of ACL entry is derived from TCP/IP network
standards. We will further refer to this style of ACL as a
network-ACL or NACL. Table 1 shows an example of an

NACL entry commonly represented as a 5-tuple. This entry
states that a packet will be accepted by the network if the
protocol is TCP and it is being sent from 192.168.1.3 port
123 to 10.0.2.10 port 80. Portions of a NACL can be masked
out so that only a portion of the entry must be matched in or-
der for a packet to be accepted by the network.

A comparison between the NACL whitelisting mechanism
and the implicit permissions discussed in section 2.2 exposes
the deficiencies of using any ACL system based on network-
centric identifiers such as protocols, network addresses, or
TCP/UDP ports. One important thing to notice is that the
source entity is referenced by an IP address and optionally
a port. For this system to work as desired, the system must
know with absolute confidence that the source entity is the
only entity with access to that address/port combination and
that it is unable to use any other combination. This is hard
to ensure because the notion of an IP address is very fluid.
While it is commonly tied to one NIC, modern operating sys-
tems allow a single machine to have many NICs, NICs can
have more than one IP address, and/or multiple NICs can
share one or more IP addresses. There is no definitive way
to determine the source entity based solely from a source IP
address. Another issue is the use of UDP and TCP ports,
which are abstract identifiers shared among all the processes
on a given machine. Tying the permissions to ports requires
the source and destination to keep numerous open sockets
proportional to the number of permission domains required
by the application.

ACL whitelisting has the right intent with its approach to
security and isolation because of its inherent implementation
of the principle of least privilege [36] and its ability to pre-
vent denial-of-service attacks by filtering invalid traffic be-
fore it enters the network. However, using network-centric
ACLs is the source of security and isolation deficiency in
modern networks.

In order to design a better system, we propose creating
ACL entries based directly from the privileges discussed in
section 2.2. Our ACL entries exactly express the communi-
cation interactions of services and their APIs. We will fur-
ther refer to this style of ACL as a service-ACL or SACL.
Table 2 shows an example of a pair of SACL entries which
reference the source entity by its actual identity, the service.
The destination is also referenced by the service along with
the process identifier within the service and the permission
domain to be accessed. As shown, two entries are needed to
communicate with a destination as each communication de-
sires to connect with a destination process and a destination
permission domain. This creates a permission orthogonality
between processes and domains. In this example, repeated
from the Twitter example from Figure 2, the TimelineService
has been given access to the Redis service using process #6
and using the Get permission domain. SACLs make reason-
ing about network permissions much easier and don’t tie the

Protocol Source Destination
Address Port Address Port

TCP 192.168.1.3 123 10.0.2.10 80

Table 1: A network-centric ACL (NACL) entry.
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Source Destination
Service Service Process Domain

TimelineService Redis 6 -
TimelineService Redis - Get

Table 2: Example service-oriented ACL entry (SACL).

permission system to any underlying transport protocol or
addressing scheme. It simply enforces permissions in their
natural habitat, the application layer.

A tremendous amount of security and isolation benefits
are available to the endpoints if the following system-level
requirements are upheld for the SACL methodology:

SACL Requirements:.

S.1 The network is a trusted entity and no endpoint has
control over it.

S.2 The network is able to derive the identity of a process
and it is impossible for a process to falsify its identity.

S.3 The source (sender) identifier is sent with each mes-
sage to the destination (receiver).

S.4 Messages sent are only received by the specified desti-
nation entity.

With these requirements upheld, the system inherently im-
plements source authentication by which all received mes-
sages explicitly state the source entity’s identification. Des-
tination authentication is also inherent by the same logic.
Combined, source and destination authentication remove the
need for complex authentication software in the application
layer. Furthermore, senders don’t need to use name servers
to discover physical addressing for desired destinations as
they only need to specify the destination by its virtual iden-
tity (i.e. service ID, process ID, and domain ID) and the
network will deliver the message to the proper physical lo-
cation.

3. SIKKER

3.1 Application Model
With the insights gained in section 2, we define a new

distributed system architecture, called Sikker, that formally
defines the structure of distributed applications. Sikker is
strictly a service-oriented architecture and makes no attempt
to justify the boundaries of applications. As a service-oriented
architecture, Sikker designates the service as the fundamen-
tal building block of distributed applications.

Each service in Sikker contains a set of processes as its
execution units that implement a common API. A process
can be an OS process, software container, virtual machine,
etc. Each process within a service is assigned a numerical
ID unique to the service.

The API of each service in Sikker contains a set of permis-
sion domains, subsequently referred to as domains. Each do-
main represents a portion of the service’s functionality with
respect to a specific permission. Sikker domains are not used
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Figure 4: An example service interaction graph. Solid edges
represent assignment and dashed edges represent permis-
sions.

for multiplexing, are not shared, and are only used to spec-
ify a destination. Each service has its own domain number
space, thus, two services using the same domain ID is ac-
ceptable.

To understand the usage of Sikker domains, consider a
simple key/value storage service that exposes functionality
to perform data retrieval like the “get” command in mem-
cached or Redis. Assuming that the service only allows users
to access their own data and not data stored by other clients,
the service would need to define a domain for the data re-
trieval function per client. Thus, for a system with three
clients there would be three domains for the “get” function-
ality, one for each user’s data. This example shows how a
service might tie its specific API commands to domains. An
alternative is to group the API commands into access types
(e.g. read and write) which results in fewer total domains.
Another alternative is to only create one domain per user.
All these are acceptable schemes in Sikker but will yield dif-
ferent granularities on which security and isolation can be
enforced.

Figure 4 is an example of service interactions under the
Sikker application model. This diagram shows three ser-
vices, each with a few processes and a few domains. Solid
lines connect services to their corresponding processes and
domains as well as connect processes to their correspond-
ing hosts. As shown, and widely used in practice, processes
from the same service and/or different services may overlap
on the same host. Dashed lines show the permissions given
to services. These lines originate at a service and end at a
process or a domain.

Each process within a service inherits all the permissions
of the service to which it belongs. In order a process to be
able to transmit a message to a specific destination, the ser-
vice of the sending process must have permission to access
the specified process and domain within the specified des-

4



tination service. Sikker performs permission checks before
messages enter the network and for every message. Because
the interaction policies of modern large-scale distributed sys-
tems are constantly in flux, Sikker allows processes and do-
mains to be added and removed from services dynamically
during runtime. When a new process is created, it inherits
all the permissions of the service to which it belongs. Any
time the permissions of a given service change, the change
is reflected in all processes of the service.

3.2 Authentication
All communication in Sikker is explicitly authenticated

at the source and destination. Similar to other networks,
processes in Sikker reside at physical locations specified by
physical addresses. However, in Sikker, processes are refer-
enced by virtual addresses that specify both the service and
the process. When a process desires to send a message on the
network, it does not specify its own identity as the source.
Instead, Sikker derives its identity, consisting of both service
and process, and attaches it to the message.

When specifying a destination for a message, the source
process specifies the destination by three things: a service,
a process within the service, and a domain within the ser-
vice. Combined, the source and destination specifications
are attached to every message transmitted on the network.
Sikker guarantees that the message will only be delivered
to the specified destination. Receiving processes are able to
inspect the source specification in the message to explicitly
know the source’s identity.

Under the Sikker security model, processes need not be
concerned about physical addressing in the network. Pro-
cesses only use service-oriented virtual network addresses
when referencing each other. Sikker performs the virtual-
to-physical translations needed for transmission on the net-
work. There is no need for name servers in Sikker.

3.3 One-Time-Permissions
The use of request-response protocols are ubiquitous in

service-oriented applications. In this environment, many ser-
vices only become active when they receive requests from
other services. This master/slave interaction is achieved via
request-response protocols. Cloud computing providers of-
ten provide services like this with many features to increase
the productivity of their tenants. These services (e.g. Ama-
zon S3[4], Google BigTable[11], Microsoft Azure Search[26])
can be very large and provide functionality to many thou-
sands of clients.

To increase scalability and to fit better with large-scale
request-response driven multi-tenant systems, Sikker con-
tains a mechanism for one-time-permissions (OTPs). An
OTP is a permission generated by one process and given to
another process to be used only once. An OTP specifies a
service, process, and domain as a destination and can only
be created using the permissions that the creating process al-
ready has. When a process receives an OTP from another
process, it is stored by Sikker in a temporary storage area
until it gets used by the process, at which time Sikker au-
tomatically deletes the permission. Because an OTP fully

specifies the destination, the process using it specifies the
OTP by its unique ID instead of specifying the destination
as a service, process, and domain. Only the process that re-
ceived the OTP can use it. OTPs cannot be shared across the
processes in a service.

For an example of using OTPs, consider Service 1 in Fig-
ure 4 which has no permissions assigned to it, thus, cannot
send messages on the network. Assume this service is a sim-
ple in-memory cache service. Its API specifies that users of
the service must give it an OTP with each request. Now
assume that Service 2 Process 1 (S2,P1) wishes to send a re-
quest to Service 1 Process 2 Domain 1 (S1,P2,D1). When
it formulates its request, it generates an OTP that specifies
itself (S2,P1) with Domain 1 as the recipient (S2,P1,D1).
(S1,P2) will receive the OTP with the request and when the
response is ready to be sent, it simply uses the OTP to send
it. After the response is sent, Sikker deletes the OTP.

Another interesting example of using OTPs is allowing
one service to act on behalf of another service. Given the
same example as before, assume that (S2,P1) wants the re-
sponse to be sent to (S3,P3,D2) instead of itself. Because it
has the proper permissions, it is able to create the OTP with
this recipient. The effect is that (S2,P1) sends the request to
(S1,P2,D1), then (S1,P2) sends the response to (S3,P3,D2).

3.4 Network Operating System
Sikker requires the existence of a network operating sys-

tem (NOS) to act as a trusted system-wide governor. The
NOS creates the services running on the network, establishes
their permissions, and distributes the proper permissions to
the proper entities in the system. The NOS is externally
reachable such that users are able to start new services on the
system and control existing services that they own. While in-
teracting with the NOS, the user is able to specify the struc-
ture of a new service in terms of processes and domains.
Furthermore, the user is able to create fine-grained permis-
sion sets (a set of processes and a set of domains) which
other services will be able to use. During runtime, services
are able to contact the NOS for changes to their own struc-
ture and for permission changes. The specific placement,
implementation, fault tolerability, and user interface of such
a NOS is beyond the scope of this work.

4. NETWORK MANAGEMENT UNIT

4.1 Architecture
In this section, we present the Network Management Unit

(NMU), a new NIC architecture that is the workhorse of
Sikker. The NMU provides each process with high-performance
network access while implementing the Sikker security and
isolation model, described in Section 3. The NMU can be
viewed as an extension to the standard NIC architecture with
the following requirements:

NMU Requirements:.

N.1 A method for efficient interaction between local pro-
cesses and the network.

N.2 A method of deriving the identity of local processes
using the network.
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IndexMap: (LocalService, LocalProcess) → LocalIndex

InfoMap: LocalIndex → (LocalService, LocalProcess, OtpNextKey,

PermissionMap: RemoteService → (ProcessMap, DomainSet)

ProcessMap: RemoteProcess → Address

DomainSet: RemoteDomain

OtpMap: OtpKey → (RequesterService, RequesterProcess,

PermissionMap, OtpMap)

RecipientService, RecipientProcess,
RecipientDomain, RecipientAddress)

Figure 5: The NMU’s internal nested hash map data struc-
tures.

N.3 A method for receiving and storing Sikker permissions.

N.4 A method for checking the permissions of outgoing
messages and, if necessary, blocking network access.

To implement high-performance network access, from re-
quirement N.1, the NMU implements OS-bypass. As with
most other OS-bypass implementations, the NMU allows a
process and the NMU to read and write from each others
memory space directly without the assistance of the kernel.
The NMU’s OS-bypass implementation has one major dif-
ference compared to other implementations, namely, it uses
the memory mapped interface to derive the identity of a com-
municating process, which fulfills requirement N.2. The
NMU contains many virtual register sets, upon which, the
various processes are able to interact with the NMU. This
corresponds to a large physical address space mapped to the
NMU. When a new networked process is started, the NMU
gives the host’s operating system the base address of the reg-
ister set that the process will use. The NMU contains an in-
ternal table that maps register set addresses to process iden-
tities. After the process is started, the register set is mapped
into the process’s memory space and the process is only able
to use this register set for interaction with the NMU. The
process never tells the NMU its identity, instead, the NMU
derives its identity from the memory address used for NMU
communication.

The NOS coordinates with every NMU in the network,
which reside on each host. The NOS is responsible for creat-
ing permissions and distributing them to the proper NMUs.
The internal data structures of the NMU have been crafted
such that all variable sized data is represented as nested hash
maps2. Furthermore, the hash mappings and value place-
ments have been optimized to keep the hash maps as small
as possible in effort to produce low predictable search times.
The elements of the NMU’s internal data structures are listed
in nested form in Figure 5. These data structures are the
NMU’s fulfillment of requirement N.3. For security reasons,
the NMU contains its own memory subsystem that is inac-
cessible by the host’s operating system3.

To implement the NMU’s internal data structures efficiently,
the NMU architecture has been designed as a data structure
2We consider hash sets the same as hash maps. A hash set is simply
a hash map with a zero sized value.
3It is possible to use the same memory system as the host processor
if the NMU uses digital signatures to verify that the information has
not been tampered with.
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Figure 6: The high-level NMU architecture.

accelerator specifically for managing nested hash maps. As
shown in Figure 6, the high-level architecture of the NMU
consists of three main blocks: permissions logic, hash map
controller, and dynamic memory allocator. The combination
of these logic blocks facilitates the management of the inter-
nal data structures.

Attached to the memory system of the NMU is the dy-
namic memory allocator which is a hardware implementa-
tion of a coalescing segregated fit free list allocator [10].
This allocator design has a good performance to memory
utilization ratio. The allocator allows both the permissions
logic and the hash map controller to create, resize, and free
dynamically sized blocks of memory. The hash map con-
troller is a hardware implementation of a linear probed open
addressing (a.k.a. closed hashed) [41] hash map controller.
We chose this particular hash map controller design because
it is extremely cache friendly. It connects to the dynamic
memory allocator and directly to the memory system. Since
the hash map controller handles all hash map operations, the
permissions logic simply issues a set of operations for each
NMU function.

The NMU’s main objective is to efficiently check the per-
missions of every outgoing message before it enters the net-
work. For each potential message being sent on the network,
the permissions logic issues commands to the hash map con-
troller that traverse the nested data structures to ensure that
proper permissions exist. If proper permissions do exist, the
permissions logic translates the virtual service-oriented net-
work address, consisting of a destination service, process,
and domain, into a physical network address. The message
is then given to the network access controller to be sent on
the network. When proper permissions do not exist, the per-
missions logic rejects transmission of the message and flags
the process with an error code in its corresponding register
set. This functionality fulfills requirement N.4.
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4.2 Operation
In this section we’ll walk through the operations the NMU

performs and how it traverses and manages the data struc-
tures shown in Figure 5. “Local” variables refer to entities
resident on the NMU and “Remote” variables refer to enti-
ties that exist on other NMUs. It is possible to send mes-
sages between processes resident on the same NMU, but
we’ll keep the “Local” and “Remote” distinctions. When
using OTPs, we define the process that generates the OTP
as the requester, the process that receives the OTP as the
responder, and the process that receives the message that
was sent using the OTP as the recipient. Thus, the requester
sends an OTP and request message to the responder and the
responder uses the OTP to send a response message to the
recipient. For two-way request-response protocols, the re-
quester and recipient are the same.

4.2.1 Send
To initiate a standard message send operation, the source

process gives the NMU the RemoteService, RemotePro-
cess, and RemoteDomain of the destination. The NMU de-
rives the sender’s LocalIndex which is a simple bit selec-
tion from the physical memory address used by the process
to communicate with the NMU. Next, the LocalIndex is
used as the key for an InfoMap lookup which yields, among
other things, the PermissionMap. The NMU then uses the
RemoteService to perform a PermissionMap lookup which
yields the ProcessMap and DomainSet corresponding to
the RemoteService. The NMU now checks that the Re-
moteProcess exists within the ProcessMap and the Re-
moteDomain within the DomainSet. If both lookups are
successful, the Address that was returned by the ProcessMap
lookup is used as the destination physical network address of
the message. The message header will contain LocalSer-
vice and LocalProcess as the message’s source and the
RemoteService, RemoteProcess, and RemoteDomain as
the message’s destination. If any lookup during this proce-
dure fails, the NMU will not send the message and will set
an error flag in the process’s register set.

4.2.2 Receive
When the destination NMU receives the message the des-

tination service, process, and domain have now become the
LocalService, LocalProcess, and LocalDomain. Using
the LocalService and LocalProcess, the NMU performs
an IndexMap lookup which yields the corresponding pro-
cess’s LocalIndex and tells the NMU which register set the
message should be placed in.

4.2.3 Send with OTP
When the requester desires to generate and send a mes-

sage with an attached OTP, on top of specifying the respon-
der as the destination of the message, it must also specify the
recipient. The NMU uses the same permission check proce-
dure as in Section 4.2.1 except now it performs two Per-
missionMap, ProcessMap, DomainSet lookup sequences,
one for the responder and one for the recipient. Upon suc-
cessful lookups, the NMU sends the message just like it did
in Section 4.2.1 except that the message header also contains
the recipient’s information as the OTP.

4.2.4 Receive with OTP
When the responder’s NMU receives the message con-

taining the OTP it starts as usual by performing an IndexMap
lookup yielding the LocalIndex. It also performs an In-
foMap lookup to retrieve the OtpNextKey and OtpMap. The
OtpNextKey and the received message are now placed in the
corresponding process’s register set. The NMU performs a
hash map insertion into the OtpMap which maps the Otp-
NextKey to the OTP information given in the message. The
NMU then advances OtpNextKey to the next key and writes
it into the memory location where it exists.

4.2.5 Send using OTP
When the responder is ready to send the response message

using the OTP, it does not specify the destination in terms of
service, process, and domain. Instead, the process gives the
NMU the OtpKey it was given during the receive operation.
The NMU uses the process’s corresponding LocalIndex to
retrieve its OtpMap from the InfoMap. The NMU then uses
the OtpKey to perform an OtpMap removal operation to re-
trieve and remove the OTP, which consists of the requester’s
information as well as the recipient’s information. The recip-
ient’s information is used as the message destination and the
requester’s information is also added to the message header
so the recipient knows where the message sequence origi-
nated from. Since the OTP was removed from the OtpMap
during this procedure, the OTP cannot be used again.

5. METHODOLOGY
Since the NMU can be viewed as an extension to the stan-

dard NIC architecture, we quantify its performance by mea-
suring the additional latency incurred by performing its op-
erations. The logic of the NMU can be attached to any mem-
ory system and the performance of the NMU widely depends
on the structure and size of the memory system chosen.

To explore the design space of the NMU and measure
its performance, we developed a custom simulator, called
SikkerSim. The top level of SikkerSim is an implementation
of a NOS that manages the permissions of all the NMUs on
a network. It does this by creating a permission connectivity
graph as shown in Figure 4 and connects a simulated NMU
on each simulated host. For each simulated NMU, Sikker-
Sim models the internal logic elements of the NMU as well
as various types of memory systems under design consider-
ation. We use SikkerSim to model NMU memory systems
spanning from single SRAMs to multi-stage cache hierar-
chies connected to DRAM. CACTI (32nm process technol-
ogy) [28] and DRAMSim2 (DDR3 SDRAM) [34] are used
in connection with SikkerSim to produce accurate timing re-
sults for each case.

For the sake of performance analysis, we chose a memory
system design that yields high performance while not incur-
ring excessive cost. This design attaches the NMU logic to a
memory system containing two levels of cache and a DRAM
main memory. The first cache level (L1) is an 8-way set as-
sociative 32 kiB cache. The second cache level (L2) is a
16-way set associative 4 MiB cache. Unlike standard micro-
processor cache hierarchies, the NMU operates directly on
physical memory addresses and considers all memory as “data”.
The NMU doesn’t need an MMU, TLB, or instruction cache,
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Processes per NMU 16
Processes per service 512
Domains per service 256

Service coverage 20%
Process coverage 65%
Domain coverage 25%

Table 3: Connectivity parameters for the synthetic service
interaction model.

thus, the NMU’s logic connection to the L1 cache is a fast
lightweight interface.

5.1 Connectivity Model
SikkerSim contains a synthetic system generator that loads

the NOS with hosts, services, processes, and domains based
on configurable parameters. The parameters we use for our
experimentation are shown in Table 3. As an example, let’s
consider a system comprised of 131,072 (i.e., 217) hosts. Un-
der our configuration each host has 16 processes that use the
NMU, thus, there are over 2 million processes in the system
using Sikker. Since there are 512 processes per service, there
are 4,096 total services, each having 256 domains. Each ser-
vice connects with 819 other services (20% of 4,096) and
each service connection is comprised of 333 processes (65%
of 512) and 64 domains (25% of 256).

This configuration represents very dense connectivity in a
distributed system. In cloud computing environments, there
are several very big services but the vast majority of services
are small. Small services come from small clients, thus, the
inter-process connectivity they require is minimal. The big
services that satisfy the requirements of many clients can
use the OTP mechanism described in Sections 3.3 and 4.2,
thus, they will not need permanent permissions loaded in
their NMUs for communicating with their clients.

Large singly-operated data centers (e.g. Facebook) more
closely approach our connectivity model as they employ many
large services. The majority of modern large-scale web ser-
vices fit within approximately 1,000 processes, however, they
only require connection with approximately 10 other ser-
vices.

Supercomputers have very little connectivity between ser-
vices, however, the services themselves can consume enor-
mous portions of the system. Besides services densely con-
necting with themselves, supercomputer workloads don’t ex-
hibit system wide dense connectivity.

5.2 Access Patterns
The data structures of the NMU present abundant spatial

locality to the memory system, and depending on the permis-
sion access pattern, significant temporal locality can also ex-
ist. SikkerSim contains a configurable synthetic permission
access pattern that is placed on each simulated NMU. For
each permissions check the permission access pattern selects
a source and destination. The source specifies which resi-
dent process will be accessing the network and the destina-
tion specifies a service, process, and domain that the source
will be sending the message to.

The worst case access pattern is a uniform random selec-

tion across the source and destination possibilities. In this
pattern, each permissions check randomly selects a resident
process as the source, then randomly selects the destination
service, process, and domain from the corresponding source
service’s permissions. This pattern exhibits no temporal lo-
cality in the NMU’s memory system.

The best case access pattern is repeatedly choosing the
same source and destination. This pattern exhibits full tem-
poral locality in the memory system. While this pattern is
unrealistic for long durations, it is realistic for very short
durations. A slight variant of this pattern would be repeat-
edly accessing the same destination service, while switch-
ing destination process and/or domain. Similarly, the same
source process might be repeatedly accessing the network
but choosing a new destination each time.

Since both the worst and best case access patterns are
somewhat realistic, we designed the synthetic permission ac-
cess pattern in SikkerSim to reflect two common attributes
that control the temporal locality in a realistic way.

Repeat Groups - The first attribute configures the amount
of repeatability at each step of the selection process for the
source and destination. There are several aspects that make
this realistic in practice. For instance, it is common for a pro-
cess using the network to interact several times with the net-
work before another process has the chance to or chooses to.
This can be caused by CPU thread scheduling or application-
level network bursting. Also, it is common for a process to
send multiple back-to-back messages to the same destina-
tion service or even the same destination service and process
and/or service and domain. The result is a higher level of
temporal locality simply due to repeated accesses in a par-
ticular selection group.

Hot Spot Groups - The second attribute configures the
selection distribution when the synthetic permission access
pattern chooses a new source and destination. This is used to
model hot spots in network traffic. For instance, an applica-
tion using a SQL database will often also use an in-memory
caching service to reduce the load on the SQL database. For
this example, the in-memory cache is a hot spot as it is ac-
cessed with higher frequency than the SQL database. We al-
low the selection process to choose using a uniform random
distribution or a Gaussian random distribution. The uniform
random distribution models network traffic that is irregular
and unpredictable while the Gaussian random distribution
models network traffic that contains hot spots both in terms
of the source and destination with all its components.

Using these controllable attributes, we used SikkerSim’s
synthetic permission access pattern to create four access pat-
terns that we use to benchmark the performance of the NMU.
They are as follows:

• Uniform Random (UR): All selections are from a uni-
form random distribution.

• Uniform Repeated Random (URR): Same as UR,
except that portions of the selection are re-used a con-
figurable number of times.

• Gaussian Random (GR): All selections are from a
Gaussian random distribution.

• Gaussian Repeated Random (GRR): Same as GR,
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except that portions of the selection are re-used a con-
figurable number of times.

6. EVALUATION

6.1 Scalability of SACLs
In this section, we evaluate the scalability of SACLs under

the Sikker model. In general, the amount of state needed to
represent a set of permissions can be expressed as

E = A×R (1)

where E is the total number of ACL entries, A is the number
of agents holding permissions, and R is the number of re-
sources being accessed. We compare the NACL methodol-
ogy to the SACL methodology with the following symbols:

st : Total number of services

ps : Number of processes per service

ds : Number of domains per service

sa : Number of accessible services

pa : Number of accessible processes per service

da : Number of accessible domains per service

ph : Number of processes per host

SACLs have two primary scalability advantages over NA-
CLs. First, SACLs apply permissions directly to services
instead of processes. Second, SACLs provide orthogonality
between the access to processes and the access to domains.
We first evaluate the amount of ACL entries needed in the
NOS. For NACLs the number of permission holding agents
is equal to the total number of processes in the system. Be-
cause NACLs have no knowledge of services, they assume
each process has its own domain set. The resulting expres-
sion is:

Nnacl = st × ps︸ ︷︷ ︸
A

×sa × pa ×da︸ ︷︷ ︸
R

(2)

where N is the number of ACL entries in the NOS. In con-
trast, the expression for SACLs is:

Nsacl = st︸︷︷︸
A

×sa × (pa +da)︸ ︷︷ ︸
R

(3)

In Figure 7 the left Y-axis and the solid lines show a com-
parison between NACLs and SACLs for the storage require-
ments of the NOS using the connectivity model from Section
5.1. This shows that SACLs maintain savings of over 4 or-
ders of magnitude versus NACLs. For example, if each ACL
entry is 4 bytes, and the system size is 131,072 hosts, NA-
CLs requires 146 TB of storage while SACLs only require
5.33 GB.

The amount of storage needed on each host scales differ-
ently than the storage required by the NOS. For both NACLs
and SACLs, the number of permission holding agents is the
number of resident processes. The resulting expression for
NACLs is:

Hnacl = ph︸︷︷︸
A

×sa × pa ×da︸ ︷︷ ︸
R

(4)

where H is the number of ACL entries on each host. In con-
trast, the expression for SACLs is:

Hsacl = ph︸︷︷︸
A

×sa × (pa +da)︸ ︷︷ ︸
R

(5)

In Figure 7 the right Y-axis and the dashed lines show
a comparison between NACLs and SACLs for the storage
requirements at each host. This shows that SACLs maintain
savings of about 2 orders of magnitude over NACLs. For
example, if each ACL entry is 4 bytes, and the system size
is 131,072 hosts, NACLs requires 1.12 GB of storage while
SACLs only require 20.8 MB.

6.2 Latency
This section analyzes the latency incurred in the NMU for

checking permissions. Figure 8 shows the mean and 99th

percentile latency response of a single permission check for
each of the four permission access patterns described in Sec-
tion 5.2. As expected, the UR and GRR patterns represent
the worst and best patterns, however, the mean of the UR pat-
tern is only up to 25% worse than the GRR pattern and both
curves flatten out by 32,768 hosts. Even under extreme con-
ditions, the NMU adds negligible latency overhead to net-
work transactions. On a large system with over 2 million
processes (131,072 hosts), the mean latency of a realistic
access pattern (GRR) is only 41 ns and the 99th percentile
latency of the worst case access pattern (UR) is only 66 ns.
Relative to the standard permissions checking process, us-
ing OTPs incurs the same latency overheads with negligible
differences.

6.3 Bandwidth
While predictably low latency is our main metric of per-

formance, bandwidth is also an important metric for high-
performance computing. Studies show that the average packet
size in common data center traffic is 850 bytes [7]. Given
this average packet size, Table 4 shows the throughput of a
single NMU logic engine. This shows that a single engine on
a very large cluster (131,072 hosts) with a realistic permis-
sion access pattern (GRR) can process 166 Gbps on average.
Even if we assume the worst case permission access pattern
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Figure 7: Scalability comparison between NACLs and
SACLs. The left Y-axis and solid lines show the storage
requirements on the NOS. The right Y-axis and dashed lines
show the storage requirements at each host.
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Figure 8: Mean and 99th percentile latency of all four access
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(UR) and its 99th percentile latency response it can still pro-
cess 103 Gbps.

UR GRR
Mean 99th%ile Mean 99th%ile

Mcps 19.23 15.15 24.39 16.13
Gbps 130.77 103.03 165.85 109.68

Table 4: Bandwidth performance of a single NMU logic en-
gine. Mcps is million permission checks per second. Gbps
is gigabits per second. Average packet size is 850 bytes.

Because the complexity of the NMU is abstracted away by
its internal data structures, the complexity of adding multiple
logic engines to a single NMU is fairly trivial. Furthermore,
the majority of the operations performed in the NMU are
read-only operations, which are highly parallelizable. For
the operations that require writes (i.e. OTPs), distributing
the data structure ownership across multiple engines and us-
ing hash-based message steering to the corresponding engine
allows near lock-free parallelization. With relatively little
effort, an NMU can be built with 4 or more logic engines.
Based on the results in Table 4 and degrading performance
by 10% to account for potential lock contention, an NMU
with 4 logic engines is able to process 55 - 88 million per-
missions checks per second (i.e. 374 - 598 Gbps).

6.4 Security
The NMU implements all the security and isolation fea-

tures of Sikker as discussed in Section 3. This includes
source and destination authentication, virtual-to-physical net-
work address translation, sender-enforced service-oriented
permission checks, and permissions management. Sikker’s
security model is more straight forward than other approaches
because the policies on which it is established are derived di-
rectly from the applications themselves, instead of being tied
to specific network transport mechanisms. Sikker provides
security and isolation mechanisms with far higher granular-

ity than current systems.
Sikker’s sender-enforced isolation mechanism removes the

ability for denial-of-service attacks between services that don’t
have permission to each other. This isolation mechanism
creates a productive programming environment for develop-
ers since they can assume that all permissions checks were
performed at the sender. In this environment, developers are
able to spend less time protecting their applications from the
network and more time developing core application logic.

The Sikker application model uses individual endpoint ma-
chines to host the processes of the various services (hence
the name host). As such, Sikker relies on the host’s oper-
ating system to provide process-level isolation between the
processes resident on that host. In general, Sikker assumes
that the various host operating systems within the network
are unreliable. For this reason, the NMU was designed to be
explicitly controlled by the NOS rather than individual host
operating systems.

In the event that a host’s operating system is exploited
by a resident process, the process might be able to assume
any of the permissions that have been given to all processes
on that host. This is a large improvement over current sys-
tems that utilize the host operating systems for security (e.g.,
hypervisor-based security and isolation). In those systems,
an exploited operating system might be given access to any-
thing in the entire network, not just the permissions resident
on that host. In Sikker, if a host’s operating system cannot
be deemed reliable enough provide process-level isolation, it
is recommended to co-locate processes only where an attack
would not prove detrimental if one resident process gained
access to another resident process’s permissions.

7. RELATED WORK

7.1 Supercomputers
For the sake of performance, modern supercomputers em-

ploy minimal security and isolation mechanisms. For isola-
tion, some fabrics use coarse-grained network partitioning
schemes that are efficient at completely isolating applica-
tions from each other but they don’t provide a mechanism
for controlled interaction between applications. This is espe-
cially problematic if the system offers shared services, such
as a distributed file system (e.g., Lustre [8]).

Some high-performance interconnects, namely InfiniBand,
employ mechanisms for secret key verification where the
receiving network interface is able to drop packets that do
not present the proper access key that corresponds to the re-
quested resource [17]. While this scheme provides a mecha-
nism for coarse-grained security, it does not provide network
isolation nor does it provide fine-grained security to cover
the application’s security requirements. As a result, the end-
points are susceptible to malicious and accidental denial-of-
service attacks and they still have to implement the required
fine-grained security checks in software.

Current research in the space of supercomputer multi-tenancy
focuses on resource utilization and fairness and makes little
effort to provide security and isolation in the face of mali-
cious behavior. These proposals [37, 21, 22, 46, 9], while
succeeding in their defined goals, do not provide secure su-
percomputing systems in the presence of multi-tenancy. Fur-
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thermore, none of these proposals provide an architecture on
which large-scale service-oriented applications can be built
with scalability. Given these systems, supercomputers are
still only useful for the well-behaved scientific computing
community.

7.2 Cloud Computing
In contrast to supercomputers, cloud computing facilities

(e.g., Amazon Web Services [2], Microsoft Azure [25], Google
Cloud Platform [15], Heroku [35], Joyent [19]) are faced
with the most malicious of tenants. These facilities run ap-
plications from many thousands of customers simultaneously,
some as small as one virtual machine and others large enough
to utilize thousands of servers. These facilities must provide
the highest level of security and isolation in order to pro-
tect their clients from each other. Furthermore, these facili-
ties often have large sharable services that get used by their
tenants for storage, caching, messaging, load balancing, etc.
These services also need to be protected from client abuse.

Network isolation mechanisms found in modern cloud com-
puting facilities are network partitioning schemes both phys-
ical and virtual (e.g., VLAN [33], VXLAN [23], NVGRE
[40], etc.). These partitioning schemes are successful at com-
pletely isolating applications from each other, but just like
the partitioning schemes found in supercomputers, they don’t
provide a mechanism for controlled interaction between par-
titions. In efforts to bridge partitions, network virtualization
software like OpenStack Neutron [30] and VMware NSX
[44] create virtualized switches (e.g., Open vSwitch [31])
that use NACLs to control the inter-partition interactions.

Current research in the space of cloud computing multi-
tenancy uses hypervisor-based pre-network processing to im-
plement various types of security and isolation. While these
proposals [20, 16, 39, 38, 6, 32] achieve their desired goals
of providing fair network resource sharing, they significantly
increase message latency and CPU utilization and still don’t
provide fine-grained security and isolation. These propos-
als are often developed and tested on network bandwidths
an order of magnitude lower than the bandwidths achieved
on supercomputers (10 Gbps vs 100 Gbps) and may not be
feasible at supercomputer bandwidths.

Due to the rate of increasingly more bandwidth in the data
center and the plateau of CPU performance, the cost of vir-
tual switching is outrunning the abilities of the CPUs on
which the hypervisor executes. A recent study [27] shows
that in 2005 a Xeon-class server with 1 Gbps Ethernet ded-
icated about 15% of its cycles to networking overhead. By
2010, with Nehalem Xeons, 10 Gbps Ethernet, and the move
to virtual switching the overhead rose to 25%. According
to the study, the overhead of Haswell Xeons matched with
25 Gbps is 33% and the overhead of future Skylake Xeons
matched with 50 Gbps Ethernet will be 45%.

It is well known that cloud computing environments im-
pose high network overheads and unpredictable performance
on their clients [45, 13]. While we do not claim that all of
these poor results are related to security and isolation, it is
evident that modern network virtualization and hypervisor-
based techniques cause significant overhead. A recent study
[43] shows that two virtual machines communicating on the
same host should expect 25-75 µs of round-trip latency. Sim-

ilarly, a virtual machine communicating with a native oper-
ating system connected to the same 10 Gbps physical switch
should expect 35-75 µs of round-trip latency. The latency
is significantly worse if the communication is forced to go
through an intermediate host containing a virtual router in
order to cross the boundary between virtualized networks,
as is done in OpenStack Neutron [30].

8. CONCLUSION
In this paper we have introduced a new distributed sys-

tem architecture, called Sikker, with an explicit security and
isolation model designed for large-scale distributed appli-
cations that run in data centers, cloud computing facilities,
and supercomputers. Sikker is designed to be a high perfor-
mance and scalable solution to enforce the permissions of
the complex interactions of modern distributed applications.
Sikker’s service-oriented application model is an intuitive
and effective alternative to network-derived ACL systems as
it was derived directly from the interactions and structure of
modern large-scale applications.

We’ve presented the Network Management Unit (NMU),
a network interface controller that efficiently enforces the
permissions scheme of Sikker. Working under the direction
of a network operating system, the NMU provides network
isolation through enforcing permissions at the sender and
provides security through its inherent implementation of the
principle of least privilege as well as source and destination
authentication. Even when paired with the highest perform-
ing interconnection networks, the NMU induces negligible
overhead for network transactions and is able to scale to fu-
ture systems with even higher performance.

Sikker and the NMU enable a new generation of distributed
systems performing like supercomputers while operating with
inherent service-oriented security and isolation. This new
generation of computing supports large-scale multi-tenant
computing platforms where system architects and applica-
tion developers are able to access remote data quickly, spend
less time writing tedious and error-pone security checks, and
spend more time developing core application logic.
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