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Abstract
After decades of evolution, the network requirements of data

centers, supercomputers, and cloud computing facilities are
beginning to converge requiring high performance network
access while supporting a secure computing environment for
numerous concurrently running applications with complex
interaction policies. Unfortunately, current network technolo-
gies are unable to simultaneously provide high performance
network access and robust application isolation and security.
As a result, system designers and application developers are
forced into making trade-offs between these requirements.

We propose Sikker1, a new network architecture for dis-
tributed systems under a single administrative domain. Sikker
includes a novel service-oriented security and isolation model
with a corresponding network interface controller, called a
Network Management Unit (NMU), that enforces this model
while providing high performance network access.

We show that Sikker’s security model satisfies the complex
interaction policies of modern large-scale distributed appli-
cations. Our experimentation results show that even when
implemented on very large clusters under worst case access
patterns, the message latency incurred by Sikker is 52ns on
average and 66ns at the 99th percentile, a negligible increase.
Smaller clusters and/or more realistic access patterns bring
these overheads down in the 35-45ns range. Sikker’s service-
oriented security and isolation mechanism removes the need
for high overhead software-based implementations imposed
by current systems. Sikker allows distributed applications to
operate in a secure environment while experiencing network
performance on par with modern supercomputers.

1. Introduction

The number and variety of applications and services running
in modern data centers, cloud computing facilities, and super-
computers has driven the need for a secure computing platform
with an intricate network isolation and security policy. Tra-
ditionally, supercomputers focused on performance at the ex-
pense of internal network security while data centers and cloud
computing facilities focused on cost efficiency, flexibility, and
Internet compatibility all at the expense of performance. In
contrast to their historical differences, the requirements of
these computing domains are beginning to converge. As data

1Sikker is a danish translation for “safe”

center and cloud computing applications increase in complex-
ity, size, and quantity, they require higher network bandwidth
and lower predictable latency. As supercomputers become
more cost sensitive and are simultaneously utilized by many
clients, they require a higher level of application isolation and
security. The advent of cloud-based supercomputing brings
these domains even closer by merging them onto the same
network fabric.

The vast majority of modern data centers utilize network
technology that has evolved from networking equipment de-
signed for wide area networks where numerous untrusted do-
mains communicate. For distributed systems under a single
administrative domain, the network can be vastly improved
by removing unnecessary overheads and adding extra network
functionality supporting higher performance, security, and pro-
ductivity. This is the basis of design for all high-performance
interconnection networks (e.g. Cray Cascade [7], IBM Blue
Gene/Q [5], Mellanox InfiniBand [23], etc.) in addition to
software-based network virtualization techniques that assume
a trusted network where security checks can be performed
in a hypervisor before entering the virtualized network (e.g.
OpenStack Neutron [8], VMware NSX [29], etc.).

The unfortunate truth is that modern network technolo-
gies have not provided distributed systems that are capable
of supercomputer-like network performance while simultane-
ously providing robust application security and isolation. As a
result, system designers and application developers are forced
to make trade-offs between performance, security, and isola-
tion leaving deficiencies in their system and creating higher
development and runtime overheads for application develop-
ers.

In this paper, we present a new distributed system archi-
tecture, called Sikker, that includes an explicit security and
isolation policy. The goal of this system is to provide the
highest level of network performance, equivalent to a super-
computer without any security mechanisms, while enforcing
the highest level of application security and isolation required
by the complex interactions of modern large-scale applica-
tions. Sikker formally defines a distributed application as a
collection of distributed services with well-defined interaction
policies. Sikker utilizes specially architected network interface
controllers, called Network Management Units (NMUs), to
enforce application security and isolation policies while pro-
viding efficient network access. These NMUs operate directly



under the control of a system-wide trusted network operat-
ing system, and as such, are not vulnerable to compromises
of individual host operating systems. This makes Sikker a
good candidate architecture for systems requiring bare-metal
computing, virtual machine computing, and hybrid computing
schemes.

This paper makes the following contributions:
• We present a new distributed system network security and

isolation model that fits directly to modern large-scale ap-
plications. This is the first work to present a network archi-
tecture that implements a service-oriented security model
and process-oriented authentication.

• We show how modern large-scale applications fit into this
model and how they can be modified to make use of the
model under our design.

• We present the Network Management Unit (NMU), a high
performance network interface controller that, under the di-
rection of a network operating system, enforces the security
and isolation policies of Sikker.

• We provide a qualitative analysis of the security and isola-
tion provided by Sikker.

• We provide a quantitative analysis of the performance of
the Network Management Unit.

2. Motivation

2.1. Service-Oriented Applications
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Figure 1: High level service connectivity

Modern large-scale distributed applications are commonly
comprised of thousands of processes. For reasons of man-
agement, separation of development, modularity, and fault
tolerance, these processes are grouped by similarity into col-
lections called services. A service is a collection of processes
developed and executed for the purpose of implementing a
subset of an application’s functionality. Applications can be
comprised of one or more services, often tens or hundreds, and
services are often shared between many applications. Figure 1
shows a simplified diagram of six services interacting to fulfill
the functionality of two applications. Each service has a de-
fined application programming interface (API) that it exposes

to provide functionality to other services or entities. Even
though a modern data center might contain thousands of ser-
vices, each service generally communicates with a relatively
small subset of the total services in order to fulfill its designed
functionality. Furthermore, it is common for a service to use
only a portion of another service’s API.

Figure 2: Twitter’s ’Finagle’ RPC system [27]

Figure 2 is a diagram created by Twitter to illustrate the
operation of their protocol-agnostic communication system.
Similarly, figure 3 is a diagram created by Netflix illustrating
their architecture on Amazon’s cloud computing platform. For
both of these designs, there exists several services custom writ-
ten for the application, as well as several services written by
third-parties. Both of these diagrams show that when design-
ing an application at a high level, application developers divide
the application’s functionality into services with well-defined
APIs to achieve modularity.

Figure 3: Netflix’s architecture on Amazon’s AWS [16]

An inspection of the code of any given service would reveal
the implicit interaction privileges it desires with other services.
In most cases, the code expressing the desired interactions
does not contain IP addresses or TCP port numbers, but instead
contains service names, process identifiers, and API functions.
For example, we might see a service called NewsFeed desiring
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to communicate with a service called UserAccounts using its
process #6 and using an API function called UserLogIn.

2.2. Network Performance

The highest level of network performance available today is
found in supercomputing interconnection networks such as
Cray Cascade [7], IBM Blue Gene/Q [5], and Mellanox In-
finiBand [24]. In order to achieve our goal of high network
performance while providing application security and isola-
tion, we define our metrics for high performance relative to
the performance of supercomputer network interconnects. In
order for a system to claim to be high performance, we argue
that it must be able to provide approximately the same level
of network performance as a supercomputer.

Modern supercomputers achieve high bandwidth and low,
predictable latency. For example, InfiniBand networks manu-
factured by Mellanox Technologies achieve round-trip times
on the order of 2µs and bandwidths as high as 56 Gbps [24].
The Cray Cascade system achieves unidirectional latencies as
low as 500ns2 and provides 93.6 Gbps3 of global bandwidth
per node [7].

One of the major strategies that supercomputers use to
achieve high performance is allowing applications to bypass
the operating system and interact with the network interface
directly. All major high performance computing fabrics (e.g.
Cray, IBM, Mellanox, Myricom) have taken this approach.
This technique is commonly referred to as operating system
bypass or OS-bypass. Along with providing lower network
latency, OS-bypass can also provide lower CPU overhead as
applications can offload transport protocol handling on the net-
work interface. OS-bypass has one major ramification, namely,
bypassing the kernel (or hypervisor) removes the kernel’s abil-
ity to impede outgoing network traffic in an effort to provide
sender-side security and isolation features. Later in this paper,
we show that this is a desirable feature and not a drawback.

2.3. Current Technologies

Supercomputer: To achieve the highest level of network per-
formance, modern supercomputers employ operating system
bypass mechanisms, protocol off-loading, and low overhead
remote memory semantics. Additionally, for the sake of perfor-
mance, these systems employ minimal security and isolation
mechanisms. For isolation, some fabrics use coarse-grained
network partitioning schemes. While these schemes are effi-
cient at completely isolating applications from each other, they
don’t provide a mechanism for controlled interaction between
applications. This becomes problematic if the cluster offers
shared services, such as a distributed file system like Lustre
[3].

2Latency specification only includes the network overhead, not the over-
head of the endpoints.

3Bandwidth specification is raw on-the-wire bandwidth. 64% of the raw
bandwidth is available to the application.

Some high performance fabrics, namely InfiniBand, employ
mechanisms for secret key verification where the receiving
network interface is able to drop packets that do not present the
proper access key that corresponds to the requested resource.
While this scheme provides a mechanism for coarse-grained
security, it does not provide network isolation. As a result, the
endpoints are susceptible to denial of service attacks, regard-
less whether they be accidental or malicious.

Cloud computing: In contrast to supercomputers, cloud
computing facilities (e.g. Amazon Web Services [1], Mi-
crosoft Azure [14], Google Cloud Platform [10], Heroku [19],
Joyent [12], etc.) are faced with the most malicious of ten-
ants. These facilities run applications from many thousands
of customers simultaneously, some as small as one machine
and others as large as thousands of machines. These facilities
must provide the highest level of security and isolation in order
to protect their clients from each other. Furthermore, these
facilities often have large sharable services that get used by
their tenants for storage, caching, messaging, load balancing,
etc. These services must also be protected from tenant abuse.

Network isolation mechanisms found in modern cloud com-
puting facilities are network partitioning schemes (e.g. VLAN
[17], VXLAN [13], NVGRE [21], etc.). These partitioning
schemes are successful at completely isolating applications
from each other, but just like the partitioning schemes found
in supercomputers, they don’t provide a mechanism for con-
trolled interaction between applications. In efforts to bridge
virtual LANs, network virtualization software like OpenStack
Neutron [8] and VMware NSX [29] create virtualized routers
that use access control lists to control the interactions between
virtual LANs. This topic is covered in depth in section 2.4.

It is well known that cloud computing environments im-
pose high network overheads and unpredictable performance
on their clients [30, 6]. While we do not claim that all of
these poor results are related to security and isolation, it is
evident that modern network virtualization techniques cause
significant overhead. A recent study [28] shows that 2 vir-
tual machines communicating on the same host should expect
25-75µs of round-trip latency. Similarly, a virtual machine
communicating with a native operating system connected to
the same physical switch should expect 35-75µs of round-trip
latency. The latency is significantly worse if the communica-
tion is forced to go through an intermediate host containing a
virtual router in order to cross the boundary between virtual-
ized networks.

Data center: The requirements of large singly-operated
data centers, such as those by Facebook, Twitter, and LinkedIn,
for example, lie somewhere in-between the requirements of
supercomputers and cloud computing facilities. Due to cost
sensitivity, these companies often choose to forego internal
network security and isolation in order to increase the effec-
tive performance of the low cost commodity equipment they
choose to deploy. In many cases this works fine with the as-
sumption that the developers of the various services within
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the company will comply properly to each other’s APIs and
expected usage rates. In general, there is no malicious intent
between services, however, software bugs and system miscon-
figurations can, and do, cause detrimental disasters in the data
center [22, 26, 11, 9, 2]. In cases where security is required,
the isolation and security mechanisms found in cloud comput-
ing facilities can be used if the corresponding overheads are
not too high for the applications’ requirements.

2.4. Security and Isolation

The implicit privileges discussed in section 2.1 present the
ideal level at which permissions should be enforced. As men-
tioned, these privileges are derived from the applications them-
selves and represent the actual intent of the underlying services
on the network. The available security and isolation techiques
in today’s data centers use multiple layers of indirection be-
fore permissions are checked and enforced. This creates high
operational complexity and presents many opportunities for
misconfiguration. Even worse is that these systems lose in-
formation about the original intent of the application, thus,
cannot enforce the privilege as it was intented. The lack of
inherent identity authenticity within the network forces devel-
opers to use authentication mechanisms that incur high CPU
overheads and are unable to properly guard against denial of
service attacks. In this section, we will describe how current
systems work and our proposal for a better solution.

To moderate network access, the majority of modern net-
work isolation mechanisms use some form of access control
list (ACL). In the abstract form, an ACL is a list of numerous
entries each containing identifiers corresponding to some com-
munication mechanism and represent a permissions whitelist.
For access to be granted, each communication must match
on one of the entries in the ACL. The most common type of
ACL entry is derived from TCP/IP network standards. We will
further refer to this style of ACL as a network-ACL or N-ACL.
Table 1 shows an example of an N-ACL entry commonly re-
ferred to as a 5-tuple. This entry states that a packet will be

Proto Src IP Src Port Dst IP Dst Port
TCP 192.168.1.3 123 10.0.2.10 80

Table 1: Example 5-tuple network-derived ACL entry

accepted by the network if the protocol is TCP and it is being
sent from 192.168.1.3 port 123 to 10.0.2.10 port 80. Portions
of a N-ACL can be masked out so that only a portion of the
entry must be matched in order for a packet to be accepted by
the network.

A comparison between the ACL whitelisting mechanism
discribed above (N-ACL) and the privileges discussed in sec-
tion 2.1 exposes many deficiencies of using any ACL system
based on network-centric identifiers such as protocols, net-
work addresses, or TCP/UDP ports. One important thing to
notice is that the source entity is referenced by an IP address

and optionally a port. For this system to work as desired, the
system must know with absolute confidence that the source
entity is the only entity with access to that address/port com-
bination and that it is unable to use any other combination.
This is hard to ensure because the notion of an IP address is
very fluid. While it is commonly tied to one network interface
controller (NIC), modern operating systems allow a single
machine to have many NICs, a single NIC to have more than
one IP address, and multiple NICs can share one or more IP
addresses. There is no definitive way to determine the source
entity based off a source IP address. Another issue is the use
of UDP and TCP ports, which are abstract identifiers shared
among all the processes on a given machine. Unless there
exists a network-wide governing system that limits the use of
these ports, these cannot be used for security and isolation.

ACL whitelisting has the right intent with its approach to
security and isolation because of its inherent implementation
of the principle of least privilege [20] and its ability to prevent
denial of service attacks by filtering invalid traffic before it
enters the network. However, using network-derived ACL
entries is the source of security and isolation deficiency in
modern networks. In order to design a better system, we pro-
pose creating ACL entries based directly from the privileges
discussed in section 2.1. Our ACL entries exactly express the
communication interactions of services and their APIs. We
will further refer to this style of ACL as a service-ACL or
S-ACL. Table 2 shows an example of an S-ACL entry. This

Src Service Dst Service Dst Process Dst API
UserAccounts Memcached 27 Set

Table 2: Example service-oriented ACL entry

service-oriented ACL entry references the source entity by
its actual identity, the service. The destination is also refer-
enced by the service along with the process identifier within
the service and the API function to be used. In this example,
the service UserAccounts has been given access to service
Memcached using process #27 and API function Set. S-ACLs
make reasoning about network permissions much easier and
doesn’t tie the permission system to any underlying transport
protocol or addressing scheme. It simply enforces permissions
in their natural habitat, the application layer.

In order for the S-ACL methodology to work as designed,
the following requirements must be upheld:
1. The network is a trusted entity and no endpoint has control

over it.
2. The network is able to derive the identity of a process and

it is impossible for a process to falsify its identity.
3. The source (sender) identifier is sent with each message to

the destination (receiver).
4. Messages sent are only received by the specified destination

entity.
If these requirements are met, a tremendous amount of se-
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curity benefits are available to the endpoints. This system
inherently implements source authentication by which all re-
ceived messages explicitly state the source entity’s identifica-
tion. Destination authentication is also inherent by the same
logic. Combined, source and destination authentication re-
move the need for complex authentication software in the
application layer. Furthermore, senders don’t need to use
nameservers to discover physical addressing for desired des-
tinations as they only need to specify the destination by its
actual identity (i.e. service ID, process ID, and API ID) and
the network will deliver the message to the proper physical
location.

3. Application and Security Model

3.1. Application Structure

With the insights gained in section 2, we define a new dis-
tributed system application and security model, called Sikker,
that formally defines the structure of distributed applications.
Sikker is strictly a service-oriented architecture and makes no
attempt to justify the boundaries of applications. As a service-
oriented application architecture, Sikker designates the service
as the basic building block of distributed applications.

Sikker defines a service by its execution units and its appli-
cation programming interface (API). The execution units of a
service are simply processes. Each service contains a collec-
tion of similar processes that implement a common API. Each
process within a service is assigned a numerical ID unique to
the service.

The API of a service is divided into permission domains
using abstract numerical IDs called ports. Each port represents
a portion of the service’s functionality with respect to a specific
permission. Unlike TCP/UDP ports, ports in Sikker are not
used for multiplexing, are not shared, and are only used to
specify a destination. Each service has its own port number
space, thus, two services using the same port ID is acceptable.

For an example of the port system, consider a simple
key/value storage service that exposes functionality to perform
data retrieval (e.g. “get” in memcached or Redis). Assuming
that the service only allows users to access their own data and
not data stored by other clients, the service would need to
define a port for each permission domain (user) for the data
retrieval function. Thus, for a system with three clients there
would be three ports for the “get” functionality, one for each
user’s data.

3.2. Network Operating System

Sikker requires the existence of a network operating system
(NOS) to act as a trusted system-wide governor. The NOS
creates the services running on the network, establishes their
permissions, and distributes the proper permissions to the
proper entities in the system. The NOS is externally reachable
such that users are able to start new services on the system
and control existing services. While interacting with the NOS,

the user is able to specify the structure of a new service in
terms of processes and ports. Furthermore, the user is able to
create fine-grained sets of permissions (processes and ports)
which other services will be able to use. During runtime,
services are able to contact the NOS for changes to their own
structure and for permission changes. The specific placement,
implementation, fault tolerability, and user interface of such a
NOS is beyond the scope of this work.

3.3. Authentication

All communication in Sikker is explicitly authenticated to both
source and destination. Similar to other networks, processes
in Sikker reside at physical locations specified by physical
addresses. However, in Sikker, processes are referenced by
virtual addresses that specify both the service and the process.
When a process desires to send a message on the network, it
does not specify its own identity as the source. Instead, Sikker
derives its identity, consisting of both service and process, and
attaches it to the message.

When specifying a destination for a message, the source
process specifies the destination by three things: a service, a
process within the service, and a port within the service. Com-
bined, the source and destination specifications are attached
to every message transmitted on the network. Sikker guaran-
tees that the message will only be delivered to the specified
destination. Receiving processes are able to inspect the source
specification in the message to explicitly know the source’s
identity.

Under the Sikker security model, processes need not be
concerned about physical addressing in the network. Processes
only use virtual service-oriented identifiers when referencing
each other. Sikker performs the translations between virtual
and physical addresses needed for transmission on the network.
There is no need for name servers in Sikker.

3.4. Static Permissions

In Sikker, each service is given a set of permissions (or privi-
leges) by the NOS with which it is able to communicate on the
network. Each process within a service inherits all the permis-
sions of the service to which it belongs. In order for a sending
process to be able to transmit a message to a specific destina-
tion, the service of the sending process must have permission
to access the specified process and port within the specified
service. Intra-service messages are treated exactly like inter-
service messages. Sikker performs permission checks before
messages enter the network for every message.

The total state needed to represent the permissions of any
permission scheme is proportional to the product of the num-
ber of entities that hold permissions and the number of re-
sources being accessed. In contrast to process-oriented per-
missions (i.e. permissions given to processes directly), service-
oriented permissions are highly scalable. For example, a large
singly-operated data center might have millions of running
processes but the number of services is only on the order of
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hundreds or thousands. By assigning permissions to services
instead of processes, Sikker is able to reduce the state needed
by three to four orders of magnitude. Service-oriented per-
missions also make it much easier to logically reason about
permissions within the system because developers and opera-
tions engineers most commonly think about communication
between services, not individual processes.

3.5. Dynamic Permissions

The interaction policies of modern large-scale distributed sys-
tems are constantly in flux. Sikker allows processes and ports
to be added and removed from services dynamically during
runtime. When a new process is created, it inherits all the
permissions of the service to which it belongs. Any time the
permissions of a given service change, the change is reflected
in all processes of the service.

To increase scalability and to fit better with large-scale
multi-tenant systems, Sikker contains a mechanism for one-
time-use permissions. This system is especially useful for
request-response protocols and protocols where one service is
allowed to operate on behalf of another service. In Sikker, a
process can create a one-time-use permission to be given to
any process it has permission to access. A one-time-use per-
mission specifies a service, process, and port as a destination
and can only be created using the permissions that the creating
process already has. When a process receives a one-time-use
permission from another process, it is stored by Sikker in
a temporary storage area until it gets used by the receiving
process, at which time Sikker automatically deletes the per-
mission. Because a one-time-use permission fully specifies
the destination, the process using it specifies the permission by
its unique ID instead of specifying the destination as a service,
process, and port.

3.6. Example

Figure 4 is shown to illustrate the concept of services and their
interactions under the Sikker programming model. This graph
diagram shows three services, each with a few processes and a
few ports. Solid lines connect services to their corresponding
processes and ports. Solid lines also connect processes to their
corresponding hosts. As shown, and widely used in practice,
processes from the same service and/or different services may
overlap on the same host. Dashed lines show the permissions
given to services. These lines originate at a service and end at
either a process or a port. It is implied that all processes of a
given service inherit the permissions of the service to which it
belongs. Table 3 describes each service by listing its processes,
process locations, and ports. Tables 4a, 4b, and 4c show the
permissions of services 1, 2, and 3, respectively. As shown in
these tables, service 1 has no permissions and as such can only
receive messages from other services. Service 2 has access
to itself and partial access to services 1 and 3. Service 3 has
access to itself, partial access to service 1, and full access to
service 2.

Host
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Svc
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Port
2

Port
1

Proc
1

Host
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Proc
1

Svc
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Port
1

Host
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3

Proc
2

Port
3

Figure 4: An example service interaction graph

Service Processes@Host Ports
1 1@1, 2@2 1, 2, 3
2 1@3 1
3 1@3, 2@4, 3@5 1, 2

Table 3: Service definitions

Service Processes Ports
1 - -
2 - -
3 - -

(a) Service 1 permissions

Service Processes Ports
1 1,2 1
2 1 1
3 2,3 2

(b) Service 2 permissions

Service Processes Ports
1 2 1,2
2 1 1
3 1,2,3 1

(c) Service 3 permissions

Table 4: Service permissions

A successful transaction: For a typical network transac-
tion, assume process #1 of service #2 desires to send a message
to process #3 of service #3 using its port #2. Both figure 4 and
table 4b show that service #2 has been given access to process
#3 and port #2 of service #3. Since all processes inherit their
permissions from their corresponding service, when process
#1 attempts to send the message Sikker will allow the message
to be sent to the destination. Sikker will translate the specified
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virtual address into a physical address of the corresponding
destination. When process #3 of service #3 receives the mes-
sage, the message will specify the source of the message as
process #1 of service #2. The message will also specify port #2
to be used in the destination process. The message transaction
is fully authenticated because both the source and destination
are guaranteed of each others identities which are unfalsifiable.
Furthermore, the source is assured that Sikker will deliver the
message to the specified destination and none else.

A failed transaction: If we take the same example as above
and alter it such that process #1 of service #2 attempts to
send to process #1 of service #3, this presents a permissions
violation. It is also a violation if it attempts to use port #1. In
these cases, the source process will construct the message just
as it did before, however, the Sikker security system will deny
access to the network for this message.

One-time-use privilege: Since service #1 doesn’t have
any static permissions, we can assume it is a service that
only serves other services upon a request. This is a prime
example of where dynamic one-time-use permissions work
very well. For the sake of this example, assume that service
#1 is a large service designed to serve the data storage needs
for many services. Service #2 has some data stored in service
#1 and needs to retrieve it. Since service #2 has permissions
to access service #1, it constructs a request message to be
sent to service #1, process #2, port #1. Its also creates a one-
time-use permission to be used by service #1 so that it is able
to send the response back to service #2. The one-time-use
permission is created specifying the destination as service #2,
process #1, port #1. Before sending the request message, the
Sikker security system checks that service #2 has permission
to access the request recipient (service #1, process #2, port #1)
and the response recipient (service #2, process #1, port #1),
which it does. The message is then sent.

Upon receiving the request message in service #1, Sikker
stores the one-time-use permission in a temporary storage area
and delivers the message to process #2 with a handle to the one-
time use permission. Service #1 retrieves the data requested by
service #2 and constructs a response message, however, it does
not specify the destination of the message. Instead, it specifies
the one-time-use permission to be used. Sikker then sends the
message to the specified response recipient and deletes the one-
time-use permission. It is important to note that while service
#2 specified itself as the response recipient in this example, it
could have specified any destination it has privilege to as the
response recipient. For example, the response could have been
sent to service #3, process #2, port #2.

4. Network Management Unit

4.1. Design

In this section, we present the Network Management Unit
(NMU), a network interface controller (NIC) architecture. The
NMU is the workhorse of Sikker as it provides each process

Processor 
Interconnect 

Controller

Network 
Access 

Controller

To LANTo CPU

Figure 5: Basic NIC architecture

with high performance network access and implements the
security model, described in section 3, under the direction of
a network operating system (NOS). The standard NIC archi-
tecture, shown in figure 5, is simply an intermediate interface
between the network and a host, including the CPU and mem-
ory. Thus, in its most basic form, a NIC is just a translation
unit that converts messages from one interconnect protocol
to another. The NMU can be viewed as an extension to the
standard NIC architecture, however, in order for a NIC to be
classified as an NMU it must have:
1. A method for efficient interaction between local processes

and the network.
2. A method of determining the identity of local processes

using the network.
3. A method for receiving and storing Sikker permissions.
4. A method for checking the permissions of outgoing mes-

sages and, if neccessary, blocking network access.
To implement high performance network access, from item

#1, the NMU implements operating system bypass, commonly
referred to as OS-bypass. As with most other OS-bypass
implementations, the NMU allows a process and the NMU
to read and write from each other’s memory space directly
without the assistance of the kernel.

The NMU’s OS-bypass implementation has one major dif-
ference compared to other implementations, namely, it uses
the memory interface to determine the identity of a commu-
nicating process, which fulfills item #2. The NMU contains
many virtual register sets upon which the various processes
interact with it. This corresponds to a large physical address
space mapped to the NMU. When a new networked process is
started, the NMU gives the host’s operating system the base
address of the register set that the process will use. The NMU
contains an internal table that maps register set address to
process identity. After the process is started, the register set is
mapped into the process’s memory space and the process is
only able to use this register set for interaction with the NMU.
The process never tells the NMU of its identity, instead, the
NMU deduces its identity from the memory address used to
communicate with it. Using this mechanism, it is impossible
for the process to falsify its identity.

As mentioned in section 3.2, Sikker requires a NOS to
coordinate service interactions and create permissions for the
entire network. The NOS coordinates with every NMU in the
network, which reside on each host. The NOS is responsible
for creating permissions and distributing them to the proper
NMUs. The internal data structure of the NMU has been
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Index Map: {Service, Process} {SourceIndex}

Info Map: {SourceIndex} {Service, Process, ReplyKey,
PrivilegeMap, ReplyMap}

Privilege Map: {Service} {ProcessMap, PortSet}

Process Map: {Process, Address}

Port Set: {Port}

Reply Map: {ReplyKey} {ReqService, ReqProcess, 
RecService, RecProcess, 
RecPort, RecAddress}

Figure 6: NMU internal data structures

carefully crafted such that all variable sized data is represented
as nested hash maps4. Furthermore, the hash mappings and
value placements have been meticulously optimized to keep
the hash maps as small as possible in effort to produce low
predictable search times. The elements of the NMU’s internal
data structure are listed in nested form in figure 6. This data
structure is the NMU’s fulfillment of item #3. For security
reasons, the NMU contains its own memory subsystem that is
inaccessible by the host’s operating system.

To LANTo CPU
Processor 

Interconnect 
Controller

Network 
Access 

Controller

Security Logic

Hash Map 
Controller

Dynamic 
Memory 
Allocator

Memory System

Figure 7: NMU architecture

To implement the NMU’s internal data structures efficiently
in hardware, the NMU’s architecture has been designed as
a data structure accelerator specifically for managing nested
hash maps and hash sets. The high-level architecture of the
NMU is shown in figure 7, which shows that the NMU is made
up of 3 main blocks: permissions logic, hash map controller,
and dynamic memory allocator. The combination of these
logic blocks facilitates the management of the internal data
structures.

4We consider hash sets the same as hash maps. A hash set is simply a hash
map with a zero sized value.

Attached to the memory system of the NMU is the dynamic
memory allocator which is a hardware implementation of a co-
alescing segregated fit free list allocator [4]. This allows both
the permissions logic and the hash map controller to create,
resize, and destroy dynamically sized blocks of memory. The
hash map controller is a hardware implementation of a linear
probed open addressing (a.k.a. closed hashed) [25] hash map
controller. It connects to the dynamic memory allocator and
directly to the memory system. Since the hash map controller
handles all hash map and hash set operations, the permissions
logic simply issues a set of operations for each NMU function.

As mentioned in section 3, Sikker requires the permissions
of every message to be checked before entering the network.
The NMU’s main purpose is to fulfill this requirement effi-
ciently. For each potential message being sent on the network,
the permissions logic issues commands to the hash map con-
troller that traverse the nested data structure to ensure that
proper privileges exists. If proper permissions exist, the per-
missions logic translates the virtual address, consisting of a
destination service, process, and port, into a physical network
address. The message is then given to the network access
controller to be sent on the network. When proper permissions
do not exist, the permissions logic rejects transmission of the
message and flags the process with an error code in its corre-
sponding register set. This is the NMU’s fulfillment of item
#4.

To implement the one-time-use permission functionality
discussed in section 3.5, the NMU contains a table for each
resident process that holds temporary one-time-use permis-
sions. Each permission in this table is indexed by a unique
identifier that is given to the process receiving the permission.
When the process desires to use one of its one-time-use per-
missions, instead of specifying the message’s destination, the
process specifies the one-time-use permission using its unique
identifier. At this time, the NMU removes the permission from
the table and uses the corresponding destination information
to send the message. When a process desires to create a one-
time-use permission to be sent to another process, the NMU
checks to see if the creating process has the proper permissions
to access the specified recipient of the response message.

4.2. Simulation

To explore the design space of the NMU and measure its
performance, we developed a custom simulator, called Sikker-
Sim, that models all the components of Sikker and the NMU.
SikkerSim contains an implementation of a network operating
system (NOS) that manages the permissions of all the NMUs
on a network. It does this by creating a graph as shown in
figure 4 and connecting an NMU to a selectable number of
hosts. For each simulated NMU, SikkerSim models the in-
ternal logic elements of the NMU as well as various types
of memory systems under design consideration. SikkerSim
contains a synthetic system generator that loads the NOS with
hosts, services, processes, and ports based on configurable
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parameters.
The first matter of design space exploration is the size of

memory system used in the NMU. We created a synthetic
service interaction model to explore the memory size require-
ments of various distributed system deployments. Given a par-
ticular system size, this model expresses the size and number
of services as well as the amount of interconnectivity between
services. The connectivity parameters and 3 specifications are
shown in table 5.

Sparse Normal Dense
Processes per NMU 16 16 16
Processes per service 512 512 512

Ports per service 256 256 256
Service coverage 5% 10% 20%
Process coverage 65% 65% 65%

Port coverage 25% 25% 25%

Table 5: Connectivity parameters for service interaction mod-
els

These 3 models aim to model large data centers that utilize
many large services with high amounts of interconnectivity
requirements. The parameters are equal except for varying the
amount service coverage, or the percentage of all services that
one service interacts with. For each model, we simulated a
loaded NMU on various network sizes ranging from 2k hosts
up to 128k hosts and measured the amount of memory needed
to store the corresponding permissions. As shown in figure 8,
the memory size requirement varies proportionally to the size
of the system, number and size of services, and the amount
of interactivity between services. For the remainder of our
analyses, we’ll use the Dense model for our simulations since
it presents a harder workload for the NMU’s memory system.
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Figure 8: Memory usage vs. System size

The data structures of the NMU present abundant spatial
locality to the memory system, and depending on the permis-
sion access pattern, significant temporal locality can also exist.
SikkerSim contains a configurable synthetic permission access
pattern that is placed on each simulated NMU. For each per-

missions check the permission access pattern selects a source
and destination. The source specifies which resident process
will be accessing the network. The destination specifies a
service, process, and port that the source will be sending the
message to.

The worst case access pattern is a uniform random selection
across the source and destination possibilities. In this pattern,
each permissions check randomly selects a resident process
as the source, then randomly selects the destination service,
process, and port from the corresponding source service’s
permissions. This pattern exhibits no temporal locality in the
memory system.

The best case access pattern is repeatedly choosing the same
source and destination. This pattern exhibits full temporal
locality in the memory system. While this pattern is unrealistic
for long durations, it is quite realistic for short permission
access sequences. Similarly, a slight variant of this pattern
would be repeatedly accessing the same destination service,
while switching destination process and/or port.

Since both the worst and best case access patterns are some-
what realistic, we architected the synthetic permission access
pattern in SikkerSim to reflect two common attributes that
control the temporal locality in a realistic way.

Repeated Domains: The first attribute configures the
amount of repeatability at each step of the selection process
for the source and destination. There are several aspects that
makes this realistic in practice. For instance, it is common for
a process using the network to interact several times with the
network interface before another process has the chance to.
This can be caused by CPU thread scheduling or application-
level network bursting. Also, it is common for a process to
send multiple back-to-back messages to the same destination
service or even the same destination service and process. The
result is a higher level of temporal locality simply due to
repeated accesses in the same domain.

Hot Spot Domains: The second attribute configures the
selection process when the synthetic permission access pattern
chooses a new source process, destination service, destina-
tion process, and destination port. This selection process can
optionally choose using a uniform distribution or a Gaussian
distribution. The uniform distribution models network traffic
that is irregular and unpredictable while the Gaussian distri-
bution models network traffic that contains hotspots both in
terms of the source and destination.

Using these controllable attributes, we used SikkerSim’s
synthetic permission access pattern to create four access pat-
terns that we use to benchmark the performance of the NMU.
They are as follows:
• Uniform Random (UR): Every permissions check selects

a source and destination with a uniform random distribution.
• Uniform Repeated Random (URR): Same as “Uniform

Random”, except that portions of the source and destination
are re-used a configurable number of times.

• Gaussian Random (GR): Every permissions check selects
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a source and destination with a Gaussian random distribu-
tion.

• Gaussian Repeated Random (GRR): Same as “Gaussian
Random”, except that portions of the source and destination
are re-used a configurable number of times.

5. Performance
Since the NMU can be viewed as an extension to the standard
NIC architecture, we quantify its performance by measuring
the additional latency incurred by performing its operations.
As figure 8 shows, a tremendous amount of permissions are
able to fit in a relatively small amount of memory, even for
very large system sizes and complexities. The logic of the
NMU can be attached to any memory system and the perfor-
mance of the NMU is largely affected by the type and size
of the memory system chosen. To narrow down the design
space, we used SikkerSim to model the NMU connected to var-
ious types of memory systems spanning from a single SRAM
to a multi-stage cache connected to DRAM. Cacti [15] and
DRAMSim2 [18] were used in connection with SikkerSim to
produce accurate timing results for each case.

For the sake of performance analysis, we’ve chosen a mem-
ory system design that yields high performance while not
incurring excessive cost. This design attaches the NMU logic
to a memory system containing two levels of cache and a
DRAM main memory. The first cache level (L1) is an 8-way
set associative 32 kiB cache. The second cache level (L2) is a
16-way set associative 4 MiB cache. While we use the stan-
dard DRAM latencies as reported by DRAMSim2, the main
memory of the NMU is small enough that it can be imple-
mented as an eDRAM on the same die, a secondary flip-chip
DRAM die, or a traditional off module DRAM.

5.1. Fixed Permissions

This section analyzes the NMU’s performance while checking
the permissions that are statically placed within the NMU. The
operation of a permissions check is a traversal of the internal
data structures listed in figure 6. When a resident process
communicates to the NMU, the NMU inherently knows its
SourceIndex from the memory address used for communica-
tion. That is then used in the first hash map search operation
where the NMU searches the InfoMap for the corresponding
source process’s information. It then searches the process’s
PrivilegeMap using the specified destination service. Next the
ProcessMap and PortSet are searched using the specified des-
tination process and port, respectively. In total, there are four
hash maps searched, but only three operations are sequential.

Figure 9 shows the average (mean) latency incurred by a
single NMU permission check for each of the four permission
access patterns described in section 4.2. As expected, the UR
and GRR patterns represent the best and worst patterns, how-
ever, the UR pattern is only 25% worse than the GRR pattern.
Figures 10a and 10b show the mean, median, 90th percentile,
and 99th percentile latencies for the Uniform Random (UR)
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Figure 10: Permissions check latency overheads

and Gaussian Repeated Random (GRR) access patterns. These
figures show that even under extreme conditions, the NMU
adds negligible overhead to network transactions. Under the
worst access pattern (UR) and on a large system size (131072
hosts), the 99th percentile latency overhead is only 66ns.

5.2. One-Time-Use Permissions

The one-time-use permission feature of the NMU uses the
same underlying mechanisms as tested in section 5.1 except
that some operations bypass the PrivilegeMap and use the
ReplyMap instead. When sending a message along with a
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one-time-use permission, the NMU performs two permis-
sions checks as described in section 5.1, one for the specified
message destination, and one for the specified one-time-use
permission. The expected latency for the this procedure is
equivalent to the results found in section 5.1 because the two
permissions checks are independent and can be performed in
parallel.

When receiving a one-time-use permission, the NMU stores
the permission in the corresponding process’s ReplyMap as
listed in figure 6. In terms of latency analysis, the only proce-
dure that must be performed before the message is delivered
to the process is determining the unique identifier that the
one-time-use permission will be assigned in the ReplyMap.
Fortunately, this is can be determined by only two hash map
search operations, searching the IndexMap then the InfoMap
to produce the ReplyKey. The one-time-use permission can be
queued for storage while the message is given to the process.

When using a one-time-use permission that had previously
been stored in a ReplyMap, the expected latency is again equiv-
alent to the standard permissions check process. While the
standard process performs a PrivilegeMap lookup then a Pro-
cessMap and PortSet lookup, the one-time-use permissions
check performs a remove operation on the ReplyMap to re-
trieve and remove the permission. The number of sequential
hash map operations is reduced by one.

Relative the to standard permissions checking process, using
one-time-use permissions incurs the same latency overheads
with negligible differences.

6. Security and Isolation
The NMU implements all the security and isolation features
of Sikker as discussed in section 3. This includes source and
destination authentication, virtual-physical address transla-
tion, sender-enforced service-oriented permission checks, and
permissions management. Sikker’s security model is more
straight forward than other approaches because the policies on
which it is established are dervived directly from the applica-
tions themselves, instead of being tied to network transport
mechanisms.

Sikker’s sender-enforced isolation mechanism removes the
ability for denial-of-service attacks between services that don’t
have permission to each other. This isolation mechanism cre-
ates a productive programming environment for developers
since they can assume that all permissions checks were per-
formed at the sender. In this environment, developers are able
to spend less time protecting their applications from the net-
work and more time developing core application logic. For
services that do have permission to access each other, upon
detecting an attack a service can immediately remove itself
from the sending service’s permissions.

The Sikker application model uses individual endpoint ma-
chines to host the processes of the various services (hence
the name host). As such, Sikker relies on the host’s oper-
ating system to provide process level isolation between the

processes resident on that host. In general, Sikker assumes
that the various host operating systems within the network
are unreliable. For this reason, the NMU was designed to be
explicitly controlled by a trusted network operating system
rather than individual host operating systems. In the event that
a host’s operating system is exploited by a resident process,
the process might be able to assume any of the permissions
that have been given to all processes on that host. This is a
large improvement over current systems that utilize the host
operating systems for security. In those systems, an exploited
operating system might be given access to anything in the
entire network, not just the permissions resident on that host.

In Sikker, if a host’s operating system cannot be deemed
reliable and the tenants of the system are potentially malicious,
it is recommended to co-locate processes only where an attack
would not prove detrimental if one resident process gained
access to another resident process’s permissions. For all intents
and purposes, under the Sikker application model, processes
and virtual machines are synonymous. Instead of mapping
only a single process to one of the NMU’s virtual register sets,
a hypervisor can map this address space to a virtual machine.

7. Conclusion

In this paper we have introduced a new distributed system
architecture, called Sikker, with an explicit security and iso-
lation model designed for large-scale distributed applications
that run in data centers, supercomputers, and cloud comput-
ing facilities. Sikker is designed to be a high performance
and scalable solution to enforce the permissions of the com-
plex interactions of modern distributed applications. Sikker’s
service-oriented application model is an intuitive and effective
alternative to network-derived ACL systems as it was derived
directly from the interactions of current applications.

We’ve presented the Network Management Unit (NMU), a
network interface controller that efficiently enforces the per-
missions scheme of Sikker. Working under the direction of a
network operating system, the NMU provides network isola-
tion through enforcing permissions at the sender and provides
security through its inherent implementation of the principle
of least privilege as well as source and destination authentica-
tion. Even when compared to the performance of the highest
performing supercomputers, the NMU induces negligible over-
heads for network transactions.

Sikker and the NMU enable a new generation of distributed
systems performing like supercomputers while operating with
inherent service-oriented security and isolation. This new gen-
eration of computing supports large-scale multi-tenant com-
puting platforms where system architects and application de-
velopers are able to access remote data quickly and spend less
time writting tedious and error-pone security checks.
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