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Abstract

With the trend towards increasing number of cores in chip
multiprocessors, the on-chip interconnect that connects the
cores needs to scale efficiently. In this work, we propose the
use of high-radix networks in on-chip interconnection net-
works and describe how the flattened butterfly topology can
be mapped to on-chip networks. By using high-radix routers
to reduce the diameter of the network, the flattened butterfly
offers lower latency and energy consumption than conven-
tional on-chip topologies. In addition, by exploiting the two
dimensional planar VLSI layout, the on-chip flattened but-
terfly can exploit the bypass channels such that non-minimal
routing can be used with minimal impact on latency and en-
ergy consumption. We evaluate the flattened butterfly and
compare it to alternate on-chip topologies using synthetic
traffic patterns and traces and show that the flattened but-
terfly can increase throughput by up to 50% compared to
a concentrated mesh and reduce latency by 28% while re-
ducing the power consumption by 38% compared to a mesh
network.

1 Introduction

Chip multiprocessors are becoming more widely utilized
to efficiently use the increasing number of transistors avail-
able in a modern VLSI technology. As the number of cores
increases in such architectures, an on-chip network is used
to connect the cores to provide a communication substrate.
These on-chip networks should provide both low latency and
high bandwidth communication fabrics that efficiently sup-
port a diverse variety of workloads.

On-chip interconnection networks have recently attracted
considerable research attention [5], much of which has fo-
cused on microarchitecture improvements [1,19] and routing
algorithms [22]. However, selecting an appropriate topol-
ogy is one of the most critical decisions in the design of an
interconnection network because it bounds critical perfor-
mance metrics such as the network’s zero-load latency and

its capacity [11], and directly influences the implementation
costs, both in terms of on-chip resources and implementa-
tion complexity. In this paper, we explore the topology as-
pect of on-chip interconnection network and argue that high-
radix topologies such as the flattened butterfly are more cost-
efficient.

Most on-chip networks that have been proposed are low-
radix, mostly utilizing a 2-D mesh such as the networks
found in the RAW processor [24], the TRIPS processor [12],
the 80-node Intel’s Teraflops research chip [25], and the 64-
node chip multiprocessor from Tilera [2]. Although such
low-radix networks provide a very simple network and lead
to very short wires in the architecture, these networks have
several disadvantages which include long network diameter
as well as energy inefficiency because of the extra hops. By
reducing the diameter of the network, high-radix networks
are advantageous both for latency and power since delay
due to intermediate routers is greatly reduced as well as the
power consumed by intermediate routers. In this paper, we
describe how on-chip networks can take advantage of high-
radix routers and describe how the flattened butterfly topol-
ogy can be used for on-chip networks [14]. A 64-node flat-
tened butterfly network is able to provide lower latency than
a concentrated mesh [3] with an equivalent bisection band-
width. In addition, we describe how the flattened butterfly
topology for on-chip networks can exploit the planar VLSI
layout and be augmented to allow non-minimal routing with-
out traversing non-minimal physical distances – further re-
ducing latency as well as energy consumption. This can be
achieved by adding bypass muxes to the network to improve
the efficiency of utilizing bypass channels.

This paper is organized as follows. We describe some of
the advantages of using high-radix on-chip networks in Sec-
tion 2. In Section 3, we present the flattened butterfly topol-
ogy for on-chip networks and describe routing algorithms.
The router microarchitecture and bypass channels are de-
scribed in Section 4. We present evaluation results in Sec-
tion 5, and then elaborate on the flattened butterfly topology
and its on-chip scalability in Section 6. Section 7 discusses
related work; we conclude in Section 8.
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Figure 1. The use of concentration in interconnection networks

-- (a) 8 node (N0 - N7) ring with 8 routers (R0 - R7) without

concentration, (b) 4 node ring with 2-way concentrator and

(c) the same topology as (b) with the 2-way concentrator

integrated into the router.

2 Background

This section describes how the cost structures of on-chip
networks differ from system interconnection networks and
presents an argument for high-radix networks on chip.

2.1 Cost of On-Chip Networks

The cost of an off-chip interconnection network typically
increases with the channel count. As the channel count in-
creases with the hop count, reducing the diameter of the net-
work reduces the cost of the network [16]. On-chip networks
differ because bandwidth is plentiful because of inexpensive
wires, while buffers are comparatively expensive. However,
reducing the diameter of on-chip networks remains benefi-
cial for several reasons. The power consumed by the chan-
nels is a significant part of aggregate on-chip network power
consumption [3]; thus, reducing the number of channels can
reduce the overall power consumption. Furthermore, since
buffered flow control is often used in on-chip networks, the
aggregate area allocated to the input buffers in the routers de-
creases as the number of channels is reduced. In this work,
we show how the use of high-radix routers and the flattened
butterfly topology leads to lower diameter and as a result,
leads to lower cost by reducing the number of channels and
the amount of buffers required in the network.

In addition to reducing the diameter, the use of concen-
tration, where network resources are shared among different
processor nodes, can improve the efficiency of the network.
An example of concentration is shown in Figure 1. Using
a ring topology, 8 nodes can be connected with 8 routers as
shown in Figure 1(a). By using a concentration factor of two,
the 8 nodes can be connected in a 4 node ring where each
node consists of two terminal nodes and a router, as shown
in Figure 1(b). The use of concentration aggregates traffic
from different nodes into a single network interface. This re-
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Figure 2. Latency of a packet in on-chip networks.

duces both the number of resources allocated to the network
routers and the average hop count, which can improve la-
tency. Thus, while providing the same bisection bandwidth,
concentration can reduce the cost of the network by reduc-
ing the network size. The concentrator can be integrated into
the router by increasing the radix of the router, as shown in
Figure 1(c), to allow all of the terminal nodes to access the
network concurrently, instead of allowing only one terminal
node associated with a router to access the network during
any one cycle. The use of concentration in on-chip networks
also reduces the wiring complexity as shown in Section 6.1.

Concentration is practical for on-chip networks because
the probability that more than one of the processors attached
to a single router will attempt to access the network on a
given cycle is relatively low. For example, in a chip multi-
processor (CMP) architecture with a shared L2 cache distrib-
uted across the chip, the L1 miss rate is often under 10% [7],
which results in relatively low traffic injection rates at the
processors. Consequently, using concentration to share the
network resources is an effective technique for CMP traf-
fic. The advantages of using concentration in on-chip net-
work were previously described for 2-D mesh networks [3].
In this paper, we describe how the flattened butterfly topol-
ogy [15] for on-chip networks use concentration as well as
high-radix routers to reduce the diameter of the network to
improve cost-efficiency.

2.2 Latency in On-Chip Networks

Latency is a critical performance metric for on-chip net-
works. The latency of a packet through an interconnection
network can be expressed as the sum of the header latency
(Th), the serialization latency (Ts), and the time of flight on
the wires (Tw),

T = Th + Ts + Tw

= Htr + L/b + Tw

where tr is the router delay, H is the hop count, L is the
packet size, and b is the channel bandwidth.

Minimizing latency requires establishing a careful bal-
ance between Th and Ts. For on-chip networks, wires are



abundant, on-chip bandwidth plentiful, and consequently Ts

can be reduced significantly by providing very wide chan-
nels. However, traditional 2-D mesh networks tend to estab-
lish Ts and Th values that are unbalanced, with wide chan-
nels providing a low Ts while Th remains high due to the
high hop-count. Consequently, these networks fail to mini-
mize latency. For example, in the 2-D mesh network used in
the Intel TeraFlop [25], with uniform random traffic, Th is
approximately 3 times Ts and for worst case traffic, there is
approximately 10× difference. 1 However, by using high-
radix routers and the flattened butterfly topology, the hop
count can be reduced at the expense of increasing the seri-
alization latency, assuming the bisection bandwidth is held
constant, as is shown in Figure 2. As a result, the flattened
butterfly achieves a lower overall latency. Note that the wire
delay (Tw) associated with the Manhattan distance between
the source and the destination nodes generally corresponds
to the minimum packet latency in an on-chip network [18].
This paper describes how high-radix routers and the flattened
butterfly topology can be used the build on-chip networks
that try to approach this ideal latency by significantly reduc-
ing the number of intermediate routers.

3 On-Chip Flattened Butterfly

3.1 Topology Description

The flattened butterfly topology [15] is a cost-efficient
topology for use with high-radix routers. The flattened but-
terfly is derived by combining (or flattening) the routers in
each row of a conventional butterfly topology while preserv-
ing the inter-router connections. The flattened butterfly is
similar to a generalized hypercube [4]; however, by provid-
ing concentration in the routers, the flattened butterfly sig-
nificantly reduces the wiring complexity of the topology, al-
lowing it to scale more efficiently.

To map a 64-node on-chip network onto the flattened but-
terfly topology, we collapse a 3-stage radix-4 butterfly net-
work (4-ary 3-fly) to produce the flattened butterfly shown
in Figure 3(a). The resulting flattened butterfly has 2 di-
mensions and uses radix-10 routers. With four processor
nodes attached to each router, the routers have a concen-
tration factor of 4. The remaining 6 router ports are used
for inter-router connections: 3 ports are used for the dimen-
sion 1 connections, and 3 ports are used for the dimension 2
connections. Routers are placed as shown in Figure 3(b) to
embed the topology in a planar VLSI layout with each router
placed in the middle of the 4 processing nodes. Routers con-
nected in dimension 1 are aligned horizontally, while routers
connected in dimension 2 are aligned vertically; thus, the

1The latency calculations were based on Intel TeraFlop [25] parameters
(tr = 1.25ns, b = 16GB/s, L = 320bits) and estimated value of wire delay
for 65nm (tw = 250ps per mm).

R0 R1 R2 R3 R4 R6 R7R5 R8 R10 R11R9 R12 R14 R15R13

dimension 1
dimension 2

(a)

R4 R7R6R5

R8 R11R10R9

R12 R15R14R13

R0 R3R2R1

(b)

Figure 3. (a) Block diagram of a 2-dimension flattened butterfly

consisting of 64 nodes and (b) the corresponding layout of the

flattened butterfly where dimension1 routers are horizontally

placed and dimension2 routers are vertically placed.

routers within a row are fully connected, as are the routers
within a column.

The wire delay associated with the Manhattan distance
between a packet’s source and its destination provides a
lower bound on latency required to traverse an on-chip net-
work. When minimal routing is used, processors in this flat-
tened butterfly network are separated by only 2 hops, which
is a significant improvement over the hop count of a 2-D
mesh. The flattened butterfly attempts to approach the wire
delay bound by reducing the number of intermediate routers
– resulting in not only lower latency but also lower energy
consumption. However, the wires connecting distant routers
in the flattened butterfly network are necessarily longer than
those found in the mesh. The adverse impact of long wires
on performance is readily reduced by optimally inserting re-
peaters and pipeline register to preserve the channel band-
width while tolerating channel traversal times that may be
several cycles. The longer channels also require deeper
buffer sizes to cover the credit round trip latency in order
to maintain full throughput.

3.2 Routing and Deadlock

Both minimal and non-minimal routing algorithms can
be implemented on the flattened butterfly topology. A lim-
ited number of virtual channels (VCs) [8] may be needed
to prevent deadlock within the network when certain rout-
ing algorithms are used. Additional VCs may be required
for purposes such as separating traffic into different classes
or avoiding deadlock in the client protocols. Dimension-
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Figure 4. Routing paths in a 2-D on-chip flattened butterfly.

(a) All of the traffic from nodes attached to R1 is sent to nodes

attached to R2. The minimal path route is shown in (b) and the

two non-minimal paths are shown in (c) and (d). For simplicity,

the processing nodes attached to these routers are not shown

and only the first row of routers is shown.

ordered routing (DOR) can be used as a minimal routing al-
gorithm for the flattened butterfly (e.g. route in dimension1,
then route in dimension 2); in this case, the routing algorithm
itself is restrictive enough to prevent deadlock. Non-minimal
routing allows the path diversity available in the flattened
butterfly network to be used to improve load balance and
performance. For these reasons, we use the non-minimal
global adaptive routing (UGAL) [23] algorithm when eval-
uating the flattened butterfly topology in this work. UGAL
load balances by determining whether it is beneficial to route
minimally or nonminimally. If it selects nonminimal routing,
UGAL routes minimally to an intermediate node in the first
phase, and then routing minimally to the destination in the
second phase. To reduce the number of VCs that are needed,
we use DOR within each phase of UGAL routing – thus,
only 2 VCs are needed.

4 Bypass Channels and Microarchitecture

As shown in Figure 3, the routers are fully connected in
each dimension. As a result, the channels that pass over other
routers in the same row or column can be referred to as by-
pass channels – i.e. channels that bypass local routers to
connect directly to its destination router. The use of these
bypass channels with non-minimal routing in on-chip flat-
tened butterfly topology can result in non-minimal physical
distance being traversed. An example is shown in Figure 4
with a traffic pattern shown in Figure 4(a). The minimal path
for this traffic pattern is shown in Figure 4(b) and the non-
minimal paths are shown in Figure 4(c,d). The layout of
an on-chip flattened butterfly can result in the non-minimal
routes overshooting the destination on the way to the inter-
mediate node selected for load-balancing (Figure 4(c)). A
non-minimal route may also route a packet away from its
destination before it is routed back to its destination on a by-
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Figure 5. Flattened butterfly router diagram with bypass chan-

nels in (a) a conventional flattened butterfly and (b) a flattened

butterfly with muxes to efficiently utilize the bypass channels.

The router diagram is illustrated for router R1 in Figure 4

with the connections shown only for a single dimension of the

flattened butterfly.

pass channel that passes over the source (Figure 4(d)). To
avoid the inefficiencies of routing packets on paths of non-
minimal physical lengths, the bypass channels can be con-
nected to those routers they pass over. These additional con-
nections allow packets to enter or leave the bypass channels
early when doing so is beneficial. In this section, we ex-
plain how the router microarchitecture and the flow control
mechanisms can be modified to connect the bypass channels
directly to the router switch in order to reduce latency and
improve energy efficiency.

4.1 Router Bypass Architecture

A high-level diagram of a router in an on-chip flattened
butterfly is shown in Figure 5(a). It consists of the switch and
bypass channels that connect the neighbouring routers. One
method to connect the bypass channels to the local router
is to add additional inputs to the switch. However, doing
so would significantly increase the complexity of the switch.
For example, in the flattened butterfly shown in Figure 3, the
switch would increase from 10×10 to 18×18 in the worst
case, nearly quadrupling the area consumed by the switch.
In addition, the use of bypass channels is not intended to
increase the bandwidth of the topology, but rather to reduce
latency and energy – thus, the larger switch, which would
provide additional bandwidth, is not needed. Instead, we



break the bypass channels as they pass over the router and
insert muxes as shown in Figure 5(b).

As illustrated in Figure 5(b), two types of muxes are
added to connect the bypass channels to the local router: in-
put muxes, and output muxes.2 The inputs to the muxes can
be classified as either bypass inputs (e.g. inputs from the by-
pass channels) or direct inputs (e.g. inputs/outputs to/from
the local router). The input muxes receive packets destined
for the local router that would otherwise bypass the local
router enroute to the intermediate node selected by the rout-
ing algorithm, as illustrated in Figure 4(c). Thus, each input
mux receives both the direct inputs that the packet would
have used if the non-minimal path was taken and the inputs
from the bypass channels. The output muxes are used by
packets that would have initially been routed away from their
destinations before being routed back over the local router,
as illustrated in Figure 4(d). The inputs to the output muxes
are the direct outputs from the local router and the bypass
channel inputs – the path the packet would have taken if
non-minimal routing path was taken. The addition of these
muxes does not eliminate the need for non-minimal routing
for load-balancing purpose. Instead, the muxes reduce the
distance traveled by packets to improve energy efficiency
and reduce latency.

4.2 Mux Arbiter

The arbiters that control the bypass muxes are critical
to the proper utilization of the bypass channels. A sim-
ple round-robin arbiter could be implemented at the muxes.
While this type of arbiter leads to a locally fair arbitration at
the mux, the arbiter does not guarantee global fairness [11].
To provide global fairness, we implement an yield arbiter
that yields to the primary input – i.e. the input that would
have used the channel bandwidth at the output of the mux if
the bypass channels were not connected to the local router.
Accordingly, the direct input is given priority at an input
mux, while the bypass channel is given priority at an out-
put mux. Thus, if the primary input is idle, the arbiter grants
access to the non-primary input.

To prevent starvation of the non-primary inputs, a control
packet is sent along the non-minimal path originally selected
by the routing algorithm. This control packet contains only
routing information and a marker bit to identify the packet
as a control packet. The control packet is routed at the in-
termediate node as though it were a regular packet, which
results in it eventually arriving at the primary input of the
muxes at the destination router. When the control packet
arrives, the non-primary input is granted access to the mux

2Using the analogy of cars and highways, the long wires introduced cor-
respond to adding highways. The input muxes correspond to adding addi-
tional exit ramps to the highways while the outputs muxes correspond to
adding entrance ramps to get on the highway.
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Figure 6. Modification to the buffers introduced into the flow

control with the utilization of bypass channels. The additional

bits of the buffers correspond to V : valid bit, CNT : count

of control packet, and DEST corresponds to control packet

content which contains a destination. Once a flit in the input

buffer is processed, if the V bit is set, CNT number of control

packets are processed in the router before the next flit in the

input buffer is processed.

output bandwidth. This policy guarantees that a packet wait-
ing at the non-primary input of a bypass mux will eventu-
ally be granted access to the bypass mux. In the worst-case
(i.e. highly congested) environment, the latency of the non-
minimal routed packets will be identical to the flattened but-
terfly that does not directly utilize the bypass channels. How-
ever, there will still be energy savings because the flit does
not traverse the non-minimal physical distance; instead, only
the control flit, which is much smaller than a data packet,
travels the full physical distance of the non-minimal route.

4.3 Switch Architecture

With minimal routing, the crossbar switch can be simpli-
fied because it need not be fully connected. Non-minimal
routing increases the complexity of the switch because some
packets might need to be routed twice within a dimension,
which requires more connections within the crossbar. How-
ever, by using the bypass channels efficiently, non-minimal
routing can be implementing using a switch of lesser com-
plexity – one that approaches the complexity of a flattened
butterfly that only supports minimal routing. If the bypass
channels are utilized, non-minimal routing does not require
sending full packets through intermediate routers, and as
a result, the connections within the switch themselves ap-
proaches that of the switch that only supports minimal rout-
ing.

4.4 Flow Control and Routing

Buffers are required at the non-primary inputs of the by-
pass muxes for flow control as illustrated in Figure 6. Thus



with non-minimal routing, credits for the bypass buffers are
needed before packet can depart a router. The control pack-
ets that are generated can be buffered in the input buffers.
However, since buffers are an expensive resource in on-chip
networks, instead of having the short control packets occupy-
ing the input buffers, minor modifications can be made to the
input buffers to handle the control packets. Once a control
packet arrives, the destination of the control packets is stored
in a separate buffer (shown with DEST field in Figure 6) and
the control bits of the input buffer need to be updated prop-
erly such that the control packet can be properly processed in
the router. These modifications should introduce little over-
head because the datapaths of on-chip networks are typically
much wider than required for the control packet.

The bypass channels are exploited when non-minimal
routing is utilized and to properly load balance the channels,
we modify the UGAL [23] routing algorithm to support by-
pass channels. When non-minimal routing is selected, in-
stead of routing to an intermediate node and then routing to
the destination, UGAL is broken into multiple phases such
that UGAL is applied in dimension 1 followed by UGAL in
dimension 2. These ensure that load balancing is achieved
while using the bypass channel to provide the minimum
physical path from source to destination.

5 Evaluation

We compare the performance of the following topologies
in this section:

1. conventional 2-D mesh (MESH)
2. concentrated mesh with express channels [3] (CMESH)
3. flattened butterfly (FBFLY)

(a) flattened butterfly with minimal routing only
(FBFLY-MIN)

(b) flattened butterfly with non-minimal routing
(FBFLY-NONMIN)

(c) flattened butterfly with non-minimal routing and
use of bypass channels (FBFLY-BYP)

The topologies were evaluated using a cycle accurate net-
work simulator. We compare the networks’ performance
and power consumption. The power consumption is based
on the model described in [3] for a 65nm technology. We
accurately model the additional pipeline delay required for
the high-radix routers as well as the additional serialization
latency through the narrower channels. The bisection band-
width is held constant across all topologies for the purpose
of comparing the performance of the different networks.

5.1 Performance

We compare the performance of the different topologies
for a 64-node on-chip network by evaluating their through-
put using open-loop simulation and also compare them using

Topology Routing
FBLY-MIN randomized-dimension
FBLY-NONMIN UGAL [23]
FBLY-BYPASS UGAL [23]
CMESH O1Turn with express channels [3]
MESH O1Turn [22]

Table 1. Routing algorithms used in simulation comparison.
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Figure 7. Throughput comparison of CMESH and FBFLY for

(a) tornado and (b) bit complement traffic pattern.

closed-loop simulation, using both synthetic traffic pattern
and traces from simulations. The routing algorithms used
for the different topologies are described in Table 1. For
flow control, virtual channel flow control is used with 2 VCs
to break routing deadlock and another 2 VCs needed to break
protocol deadlock for the closed-loop simulations.

5.1.1 Throughput Comparison

To evaluate the throughput, the simulator is warmed up un-
der load without taking measurements until steady-state is
reached. Then a sample of injected packets is labeled dur-
ing a measurement interval. The simulation is run until all
labeled packets exit the system. For the throughput analysis,
packets are assume to be single-flit packets.

In Figure 7, we compare the latency vs. offered load on
two adversarial traffic patterns for CMESH and FBFLY –
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Figure 9. Node completion time variance for the different topologies (a) mesh (b) CMESH and (c) flattened butterfly.
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different synthetic traffic pattern.

two topologies that utilize concentration to reduce the cost
of the network. By effectively utilizing non-minimal rout-
ing and smaller diameter of the topology, FBFLY can pro-
vide up to 50% increase in throughput compared to CMESH
while provide lower zero-load latency. Although the MESH
can provide higher throughput for some traffic pattern, it has
been previously shown that CMESH results in a more cost-
and energy-efficient topology compared to the MESH [3].

5.1.2 Synthetic Batch Traffic

In addition to the throughput measurement, we use a batch
experiment to model the memory coherence traffic of a
shared memory multiprocessor. Each processor executes a
fixed number of remote memory operations (e.g. remote
cache line read/write requests) during the simulation and
we record the time required for all operations to complete.
Read requests and write acknowledgements are mapped into
64-bit messages, while read replies and write requests are
mapped into 576-bit messages. Each processor may have
up to four outstanding memory operations. The synthetic
traffic pattern used are uniform random (UR), bit comple-
ment, transpose, tornado, a random permutation, and bit re-
verse [11].

Figure 8 shows the performance comparison for the batch
experiment and we normalize the latency to the mesh net-
work. CMESH reduces latency, compared to the MESH,

by 10% but the flattened butterfly reduces the latency fur-
ther. By using FBFLY-NONMIN, the latency can actually
increase because of the extra latency incurred with the non-
minimal routing. However, the FBFLY-BYP provides the
benefit of non-minimal routing but reducing the latency as
all packets take minimal physical path and results in approx-
imately 28% latency reduction, compared to the MESH net-
work.

In addition to the latency required to complete the batch
job, we also plot the variance of the completion time of the
64 nodes. A histogram is shown in Figure 9 that collects the
completion time for each processing node. With the flattened
butterfly, because of the lower diameter, the completion time
has much more tighter distribution and smaller variance in
the completion time across all of the nodes. Less variance
can reduce the global synchronization time in chip multi-
processor systems. The CMESH, because it is not a sym-
metric topology, leads to an unbalanced distribution of com-
pletion time.

5.1.3 Multiprocessor Traces

Network traces were collected from an instrumented version
of a 64-processor directory based Transactional Coherence
and Consistency (TCC) multiprocessor simulator [6]. In ad-
dition to capturing the traffic patterns and message distrib-
utions, we record detailed protocol information so that we
can infer dependencies between messages and identify se-
quences of interdependent communication and computation
phases at each processor node. This improves the accu-
racy of the performance measured when the traces are re-
played through a cycle-accurate network simulator. When
capturing the traces, we use an idealized interconnection net-
work model which provides instantaneous message delivery
to avoid adversely biasing the traces. The traffic injection
process uses the recorded protocol information to reconstruct
the state of each processor node. Essentially, each processor
is modelled as being in one of two states: an active comput-
ing state, during which it progresses towards its next com-
munication event; or, an idle communicating state, in which
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Figure 10. Performance comparison from SPLASH bench-

mark traces generated from a distributed TCC simulator.

it is stalled waiting for an outstanding communication re-
quest to complete. Incoming communication events which
do not require processor intervention, such as a remote read
request, are assumed to be handled by the memory controller
and therefore do not interrupt the receiving processor.

Four benchmarks (barnes, ocean, equake, and tomcatv)
from the SPLASH benchmarks [26] were used to evaluate
the alternative topologies and the results are shown in Fig-
ure 10. For two of the benchmarks (equake, tomcatv), the
flattened butterfly on-chip network provides less than 5% re-
duction in latency. However, for the other two benchmarks
(barnes, ocean), the flattened butterfly can provide up to 20%
reduction in latency.

5.2 Power Comparison

The power consumption comparison is shown in Fig-
ure 11. The flattened butterfly provides additional power
saving, compared to the CMESH. With the reduction in the
width of the datapath, the power consumption of the crossbar
is also reduced – thus, achieving approximately 38% power
reduction compared to the mesh network.

The area of a router tends to increase with its radix. Con-
trol logic, such as the allocators, consumes area proportional
to the radix of the router; however, it represents a small frac-
tion of the aggregate area. Consequently, the buffers and
switch dominate the router area. The buffer area can be
kept constant as the radix increases by reducing the buffer
space allocated per input port. The total switch area can be
approximated as n(bk)2 where n is the number of routers,
b is the bandwidth per port, and k is the router radix. As
k increases, b decreases because the bisection bandwidth is
held constant, and n also decreases, because each router ser-
vices more processors. Consequently, we expect high-radix
on-chip network will consume less area. We estimate that
the flattened butterfly provides an area reduction of approxi-
mately 4x compared to the conventional mesh network and a
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Figure 11. Power consumption comparison of alternative

topologies on UR traffic.

reduction of 2.5x compared to the concentrated mesh. 3 Al-
though the introduction of the bypass muxes can increase the
area as well as the power, the impact is negligible compare
to the area and power consumption of the buffers and the
channels.

6 Discussion

In this section we describe how the flattened butterfly
topology can be scaled as more processors are integrated on
chip. We also describe how the long direct links used in
the flattened butterfly topology are likely to benefit from ad-
vances in on-chip signalling techniques, and how these direct
links provide some of the performance benefits traditionally
provided by virtual channels.

6.1 Comparison to Generalized Hypercube

The flattened butterfly topology is similar to the general-
ized hypercube [4] but the main difference is the use of con-
centration of in the flattened butterfly. The use of concen-
tration significantly reduces the wiring complexity because
the resulting network requires fewer channels to connect the
routers. Furthermore, it is often possible to provide wider
channels when concentration is used, because there are fewer
channels competing for limited wire resources, which im-
proves the typical serialization latency. With the embedding
of the topology into a planar VLSI layout constraint for on-
chip networks, as the number of channels crossing a particu-
lar bisection increases, the total amount of bandwidth needs
to be divided among a larger number of channels – thus, de-
creasing the amount of bandwidth per channel.

A layout of a conventional mesh network and the 2-D
flattened butterfly is shown in Figure 12(a,b). Although the
flattened butterfly increases the number of channels crossing

3Although there is a radix increase from radix-8 to radix-10 comparing
CMESH to the flattened butterfly, since b is reduced in half, there is an
overall decrease in total area.
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Figure 12. Layout of 64-node on-chip networks, illustrating

the connections for the top two rows of nodes and routers

for (a) a conventional 2-D mesh network, (b) 2-D flattened

butterfly, and (c) a generalized hypercube. Because of the

complexity, the channels connected to only R0 are shown for

the generalized hypercube.

neighboring routers in the middle by a factor of 4, the use of
concentration allows the two rows of wire bandwidth to be
combined – thus, resulting in a reduction of bandwidth per
channel by only a factor of 2. However, the generalized hy-
percube (Figure 12(c)) topology would increase the number
of channels in the bisection of the network by a factor of 16,
which would adversely impact the serialization latency and
the overall latency of the network.

6.2 Scaling On-Chip Flattened Butterfly

The flattened butterfly in on-chip networks can be scaled
to accommodate more nodes in different ways. One method
of scaling the topology is to increase the concentration factor.
For example, the concentration factor can be increased from
4 to 8 to increase the number of nodes in the network from
64 to 128 as shown in Figure 13(a). This further increases
the radix of the router to radix-14. With this approach, the
bandwidth of the inter-router channels needs to be properly
adjusted such that there is sufficient bandwidth to support the
terminal bandwidth.

Another scaling methodology is to increase the dimen-
sion of the flattened butterfly. For example, the dimension
can be increased from a 2-D flattened butterfly to a 3-D flat-
tened butterfly and provide an on-chip network with up to
256 nodes as shown in Figure 13(b). To scale a larger num-
ber of nodes, both the concentration factor as well as the
number of dimensions can be increased as well.

However, as mentioned in Section 6.1, as the number of
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Figure 13. Different methods to scale the on-chip flattened

butterfly by (a) increasing the concentration factor, (b) increas-

ing the dimension of the flattened butterfly, and (c) using a

hybrid approach to scaling.

channels crossing the bisection increase, reduction in band-
width per channel and increased serialization latency be-
come problematic. To overcome this, an hybrid approach
can be used to scale the on-chip flattened butterfly. One such
possibility is shown in Figure 13(c) where the 2-D flattened
butterfly is used locally and the cluster of 2-D flattened but-
terfly is connected with a mesh network. This reduces the
number channels crossing the bisection and minimizes the
impact of narrower channels at the expense of slightly in-
crease in the average hop count (compared to a pure flattened
butterfly).

6.3 Future Technologies

The use of high-radix routers in on-chip networks intro-
duces long wires. The analysis in this work assumed opti-
mally repeated wires to mitigate the impact of long wires and
utilized pipelined buffers for multicycle wire delays. How-
ever, many evolving technology will impact communication
in future on-chip networks and the longer wires in the on-
chip flattened butterfly topology are suitable to exploit these
technologies. For example, on-chip optical signalling [17]
and on-chip high-speed signalling [13] attempt to provide
signal propagation velocities that are close to the speed of
light while providing higher bandwidth for on-chip commu-
nications. With a conventional 2D mesh topology, all of the



wires are relatively short and because of the overhead in-
volved in these technologies, low-radix topologies can not
exploit their benefits. However, for the on-chip flattened
butterfly topology which contains both short wires as well
as long wires, the topology can take advantage of the cheap
electrical wires for the short channels while exploiting these
new technologies for the long channels.

6.4 Use of Virtual Channels

Virtual channels (VCs) were originally used to break
deadlocks [9] and were also proposed to increase network
performance by provide multiple virtual lanes for a single
physical channel [8]. When multiple output VCs can be as-
signed to an input VC, a VC allocation is required which can
significantly impact the latency and the area of a router. For
example, in the TRIPS on-chip network, the VC allocation
consumes 27% of the cycle time [12] and an area analysis
show that VC allocation can occupy up to 35% of the total
area for an on-chip network router [20].

In Figure 14(a), an example of how blocking can oc-
cur in conventional network with wormhole flow control
is shown. By utilizing virtual channel flow control (Fig-
ure 14(b)), buffers are partitioned into multiple VCs, which
allow packets to pass blocked packets. However, with the
use of high-radix routers and the flattened butterfly topology,
the additional wire resources available can be used to over-
come the blocking that can occur as shown in Figure 14(c).
As a result, blocking is reduced to only packets originating
from the same source router and destined to the routers in the
same column of the network. Thus, the topology reduces the
need for the buffers to be partitioned into multiple VCs and
takes advantage of the abundant wiring available in an on-
chip network. VCs for other usage such as separating traffic
into different classes might still be needed but such usage
does not require VC allocation.

Figure 15 shows how the performance of the flattened but-
terfly is changed by increasing the number of VCs. In the
simulation comparison, the total amount of storage per phys-
ical channel is held constant – thus, as the number of VCs is
increased, the amount of buffering per VC is decreased. As
a result, increasing the number of VCs for an on-chip flat-
tened butterfly can slightly degrade the performance of the
network since the amount of buffering per VC is reduced.

7 Related Work

Most on-chip networks that have been proposed are low-
radix, mostly utilizing a 2D mesh or a torus network [10].
Balfour and Dally proposed using concentrated mesh and
express channels in on-chip networks to reduce the diame-
ter and energy of the network [3]. This work expands on
their idea and provides a symmetric topology that further re-
duces latency and energy. In addition, the benefits of creating
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Figure 14. Block diagram of packet blocking in (a) wormhole

flow control (b) virtual channel flow control and (c) flattened

butterfly.
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parallel subnetworks [3] can also be applied to the flattened
butterfly topology in on-chip networks.

Kim et al. [16] showed that the increasing pin bandwidth
can be exploited with high-radix routers to achieve lower
cost and lower latency in off-chip interconnection networks.
Although on-chip networks have very different constraints
compared to off-chip networks, we showed how the flattened
butterfly topology [15] proposed for high-radix off-chip in-
terconnection networks can also be applied to on-chip net-
works. Kumar et al. [18] proposed the use of express virtual
channels (EVC) to reduce the latency of 2-D mesh on-chip
network by bypassing intermediate routers. However, EVC
requires sharing the bandwidth between EVC and non-EVC
packets in a 2-D mesh network. Both the EVC and the flat-
tened butterfly topology share similar objective of trying to
achieve ideal latency in on-chip networks but they differ in
the approach – EVC is a flow control while the flattened but-



terfly is a topology.
The yield arbiter described in Section 4.2 is similar in

concept to the flit-reservation flow control (FRFC) [21]. In
FRFC, a control flit is sent ahead of the data flits and reserves
the buffers and channels for the ensuing data flits. However,
the scheme described in this paper uses the control flit to en-
sure bandwidth for the data flits in the worst-case scenario
(i.e. very congested network) – otherwise, the bypass chan-
nel is used regardless of the control flit.

The scaling of the topology with an hybrid (mesh) ap-
proach at the top level has been proposed for off-chip inter-
connection networks to reduce the length of the global ca-
bles [27]. Similar scaling can also be applied for on-chip
networks as shown in Section 6.2 with the benefits being not
just shorter wires but also reduced on-chip wiring complex-
ity.

8 Conclusion

In this paper, we described how high-radix routers and
the flattened butterfly topology can be utilized in on-chip net-
works to realize reduction in latency and power. By reducing
the number of routers and channels in the network, it results
in a more efficient network with lower latency and lower en-
ergy consumption. In addition, we describe the utilization
of bypass channels to utilize non-minimal routing with min-
imal increase in power while further reducing latency in the
on-chip network. We show that the flattened butterfly can
increase throughput by up to 50% compared to the concen-
trated mesh and reduce latency by 28% while reducing the
power consumption by 38% compared to a mesh network.
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