
Buffer and Delay Bounds in High Radix
Interconnection Networks

Arjun Singh and William J Dally
Computer Systems Laboratory, Stanford University

�arjuns, billd�@cva.stanford.edu

Abstract— We apply recent results in queueing theory to
propose a methodology for bounding the buffer depth and packet
delay in high radix interconnection networks. While most work
in interconnection networks has been focused on the throughput
and average latency in such systems, few studies have been
done providing statistical guarantees for buffer depth and packet
delays. These parameters are key in the design and performance
of a network. We present a methodology for calculating such
bounds for a practical high radix network and through extensive
simulations show its effectiveness for both bursty and non-bursty
injection traffic. Our results suggest that modest speedups and
buffer depths enable reliable networks without flow control to
be constructed.

I. INTRODUCTION

High radix Interconnection networks are widely used in
supercomputer networks (Merrimac Streaming Supercom-
puter [3]) and for I/O interconnect (Infiniband Switch fab-
ric [8]). Most research for such interconnection networks fo-
cuses on analyzing the throughput and average packet latency
of the system. However, little work has been done towards
bounding the occupancy of the buffers in the network or the
delay incurred by a packet.

The buffer occupancy and the delay distributions play a
key role in the design and performance of the network.
Bounding the number of packets in a buffer in the network
is valuable for network administration and buffer resource
allocation. A statistical bound on the packet delay is essential
for guaranteeing Quality of Service for delivery of packets.

The analysis of a network of deterministic service queues
is a known hard problem. The difficulty in analysis primarily
arises from the fact that the traffic processes do not retain their
statistical properties as they traverse such a network of queues.
Given a myriad of sophisticated techniques developed for
analyzing a single deterministic service queue, there has been
some recent work that attempts to decompose the network
based on large deviations techniques [11], [10]. Most of these
results are applicable in the convergence regimes, such as
in the case when there are several flows passing through a
queue, called the many sources asymptotic regime. Using the
many-sources-aysmptotic, Wischik [11], [10] shows that the
distribution of a traffic flow is preserved by passage through
a queue with deterministic service, in the limit where the
number of independent input flows to that queue increases
and the service rate and buffer size increase in proportion.

Manuscript submitted: 22 Oct. 2004. Manuscript accepted: 10 Dec. 2004.
Final manuscript received: 15 Dec. 2004.

More recently, Eun & Shroff [4], [5] use similar convergence
results to significantly simplify the analysis of such a network.
In particular, they show that, if internal nodes in a network are
capable of serving many flows, we can remove these nodes
from consideration and the queueing behavior of other network
nodes remains largely the same.

In this paper, we use the aforementioned convergence results
to bound the queue depth and packet delay in high radix
interconnection networks. Our simulations show that such
convergence results start to kick in when the radix (degree)
of the network is as small as �����. We also use our bounds
to propose a routing mechanism with almost negligible flow
control overhead.

II. MANY SOURCES QUEUEING REGIME

NC

A(s,t)

A’(s,t)

D(s,t)

D’(s,t)

R(s,t)
QN(t)

Q1(t)

Fig. 1. An upstream queue feeding some flows into a downstream queue

In order to see how network analysis can be simplified in
the many sources regime, consider the set up of two queues in
Figure 1. Let there be � flows going into the upstream queue.
The subset of these flows that go on into the downstream queue
have a combined arrival process given by ���� �� which is the
total number of packets arriving in the time interval ��� ��.
The remaining set of flows have arrival process � ���� ��. Let
the service capacity of the upstream queue be ��, i.e. the
service per flow is � packets per time step. The departing
flows from the first queue going into the downstream queue
have a departure process given by ���� ��. The downstream
queue can also receive more cross traffic given by ���� ��. Let
the queue depth of the downstream queue at time � be � ����
while that for the upstream queue be �����. In order to find
the Prob��� 	
�, we can simplify this scenario into � queue.

A(s,t)

R(s,t) Q2(t)

Fig. 2. Simplified scenario of the set up of two queues

Figure 2 shows a simplified scenario of Figure 1. In this
figure, the effect of the upstream queue on flows ���� �� is

ignored. Let the queue depth of the downstream queue for
this scenario be �����. The authors of [5], [4] prove that as
� � �, Prob��� 	
� converges to Prob��� 	
� and
that the speed of this convergence is exponentially fast. Hence,
with a modest number of multiplexed sources, the convergence
results start to hold.

III. APPLICATION TO HIGH RADIX FAT TREES

In the rest of this paper, we shall apply the many sources
regime results to analyzing buffer depth in a popular high radix
topology — Clos [2] or fat tree networks [7]. The high radix
switch queues are an appropriate application for the many
sources asymptotic results. As the radix (and the number of
sources) increases, the statistical properties of the flows get
preserved as they traverse the network. Our simulations show
that the convergence results hold for a radix as small as �����.

In our experimental set up, we have simulated a specific
kind of fat tree — a �-ary � tree network. A �-ary � tree
network has � levels of internal switches and a total of ��

leaf nodes that can communicate with each other using these
switches. There are ����� internal switches which have ��
incoming ports and �� outgoing ports. The internal switches
have buffers inside where packets are stored and serviced to
their appropriate output port. Figure 3 shows a diagram for a
�-ary � tree. In our simulations, we will concentrate on high
radix trees where � is of the order of �� or ��.

Fig. 3. A 2 ary 4 tree

Load balancing on such a fat tree is easily accomplished
using Random Root Routing (RRR) in which each packet is
routed to a randomly chosen root switch and then down to
the desired destination resulting in a total of �� � � hops
for every packet. A more sophisticated approach — called
Random Common Ancestor Routing (RCAR) — is to route
up to a (randomly chosen) common ancestor of the source and
destination leaf node and then down to the destination node.
In our analysis, we focus on RRR as it enables us to treat all
traffic patterns as two phases of uniformly random traffic, thus
making the analysis more tractable. The analysis for RRR is
also a conservative analysis for RCAR as the latter has strictly
fewer packets using the resources in the upper levels of the
network.

IV. RESULTS

In this section, we first study the impact of the radix on
the buffer occupancy distribution in the queues at each hop

of the fat tree network. Our approach is to first increase the
radix � in a � ary � tree network while keeping the per
channel bandwidth constant. We then plot the Complementary
Cumulative Distribution Functions (CCDFs) of the queue
depth occupancy at each of the � hops of the network. We
perform this experiment for non-bursty Bernoulli Uniform and
bursty injection traffic. For both these injection processes, the
many sources convergence results start to manifest themselves
at reasonably small values of �. Using these values of �,
we can analytically calculate the exact CCDF from queueing
theory for each of the � queues, thus giving us buffer depth
bounds. We then use the per hop buffer depth bound to
approximate the end-to-end delay of a packet through the
network by convolving the per-hop distributions obtained. This
approximation gives very accurate results especially at high
injection loads.

A. Increasing the radix �

In the very first experiment, we inject packets at each source
according to a non-bursty Bernoulli Uniform process. Each
source injects a packet with a probability at every time step.
We increase the radix k of each switch and measure the queue
depth at each of the � hops of a �-ary � tree network. Figure 4
shows that the CCDFs of the queues are quite divergent for
a low radix (� � �) but tend to converge to almost identical
plots as � is increased to ��. This is because, for a high enough
radix, the statistical properties of the flows are preserved as
they traverse the network. Hence, for the non-bursty injection
process, a radix of �� is a reasonable working parameter to
use the convergence results.

B. Analytically obtaining the CCDF

We now describe our analytical approach for obtaining the
CCDFs of the queue depths at each hop. For the �� ary � tree
case with non-bursty injection, it suffices to obtain the CCDF
for the first hop as the other hops behave almost identically.

Let � be the random variable that represents the total traffic
at each time step to the queue at the first hop. Thus, � ��

�

���
��, where ��� ��� � � ��� are Bernoulli IID random

variables corresponding to the � sources such that if � is
the probability that the source � will send a packet along this
queue, then �� � � with probability �. Also, the mean arrival
rate is given by �	�
 �

�
�

���
�.

Let the service capacity of the queue be � � � packet per
time step. If the queue is stable i.e., �	�
 � �, we can find
the Probability Generating Function (PGF)1 of the queue size
���� using the formula derived in [6].

���� � � �� � ��
�� � ������

�� ������
(1)

In our case

���� �

��
���

���� �� � ��� and � �� � �� � ���	�
 (2)

1The PGF, G, of a random variable, � , is given by ���� � ����� ��
�

���
������ , where � is the probability mass function for � .

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16 18

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

(a) (b)

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n
P

 [
D

ep
th

 >
=

n
]

Q1 Q2 Q3 Q4 Q5

(c) (d)

Fig. 4. Queue depth at each hop of a k-ary 3 tree for (a) k=2 (b) k=4 (c) k=8 and (d) k=16

The derivation for � �� � �� is shown in [9]. Moreover,
� � for all � since all sources inject traffic with the same
probability. Using Equation 1 we can find out the queue size
distribution in the following way :

� �� � �� �
�

�

��
�

��

��
����

�
���

(3)

Equation 3 can then be used to derive the CCDF for the
queue depth at each hop of the �� ary � tree network.

Figure 5 shows the analytically derived queue depth against
the measured values obtained in the previous subsection. The
queues at each hop are at a utilization of ��� i.e., �	�
�� �
���. The model matches almost exactly with the simulations.
While the observed values were obtained through simulations
run for � days, the theoretical CCDF could be derived in
minutes using the Maple software [1] for solving (3). In doing
so, we could quickly derive the buffer depth required for
which the overflow probability would be of the order of �����,
something that was not tractable by simulations alone.

C. Approximating the delay CCDF

Having found the buffer depth distributions at each hop,
our next aim is to approximate the end-to-end delay of packets
traversing the network. The latency, � , incurred by a packet is
the sum of two components, � � ���, where � is the hop
count and � is the queueing delay. For the �� ary � tree case,
� � �. The random variable � is the queueing delay incurred
due to buffering at each of the hops in the network. The per-
hop delay in each queue is directly related to the occupancy
of the queue and its service capacity. In order to find the
distribution of �, we make the simplifying assumption that the

1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001

0.01
0.1

1

0 5 10 15 20 25 30 35 40

n

P
 [D

ep
th

 >
=

n]

Q1 Q2 Q3 Q4 Q5 Theory

Fig. 5. Analytically derived queue depth against the measured queue depth
at each hop for a 16 ary 3 tree at 0.6 load

per hop delays at each hop are independent of each other. This
assumption has been shown to give accurate results in practice
especially as the load is increased [12]. This is because, as the
buffer load increases, the output of a queue (which is the input
to the downstream queue) gets less correlated with the input.

Using this independence assumption, we can find the
distribution of � by simply convolving the per-hop delay
distributions calculated before, which is equivalent to simply
taking the product of their PGFs. Finally, adding the constant
� to � gives us the end-to-end delay distribution.

Figure 6 compares the analytical delay CCDF with the
measured values for injection loads of ���, ��� and ���. As
expected, the analytical and observed plots almost match
for the highest load of ���. They also are reasonably good
approximations for the lower loads.

It is to be noted that the radix at which reasonable con-

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120

n

P
 [D

el
ay

>=
n]

Theory Load = 0.2 Sim Load = 0.2 Theory Load = 0.6

Sim Load = 0.6 Theory Load = 0.8 Sim Load = 0.8

Fig. 6. End-to-end packet delay (theoretical and measured) for a 16 ary 3
tree at different injected loads

vergence holds depends on the size of the network and the
injection sources. For instance, for bursty injection sources, a
radix value of �� shows convergence sufficient for the above
analysis to give good results. The complete results are omitted
for brevity and can be found in [9].

V. DISCUSSION

An interesting fallout from deriving buffer depth bounds is
that we can use them to make the flow control of the packets
trivial. In order to not drop packets, a packet in the upstream
node does not leave for the downstream node until it gets a
credit signifying there is enough buffer space available there.
If we were to send packets to the downstream node ignoring
this flow control information, the packet would be dropped if
there was no space in the downstream node. However, we can
set our buffer depths to a reasonable size and make sure that
for admissible traffic the probability of a drop due to buffer
overflow is substantially lower than the probability of a drop
due to a hard error. In order to do this, we must either police
the injection process or provide a little internal speedup to the
network.

Take for instance, the non-bursty injection process on a ��
ary � tree. We have successfully computed the buffer depth
requirement for a particular injection load of ��� that has a
very low probability of exceeding (of the order �����). Re-
peating our calculations for different loads, we can study how
the buffer depth requirements grow as the load is increased
keeping the probability of overflow constant at �����.

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Load

B
uf

fe
r

de
pt

h
n

su
ch

 th
at

 P
 [D

ep
th

 >
=

 n
] <

 =
 1

0^
-1

5

Fig. 7. Buffer depth requirement at various injection loads

Figure 7 shows that as the injected load reaches the sat-
uration value of �, the buffers start to grow without bound.
However, at slightly less than this saturation value, say ���, a
buffer size of ��� packets is required to ensure that the drop
probability without flow control is less than �����. Hence,
either by policing the injection to make sure that the injection
rate stays below ��� or by providing a small internal speedup
of ����� � ����, we can remove the flow control overhead
from the routing process. A similar analysis can be carried
out for other injection processes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have used recent convergence results in
queueing theory to propose a methodology for bounding the
buffer depth and packet delay in high radix interconnection
networks. We have presented extensive simulations to show
that the convergence results start to kick in for radix values
as small as ��� ��. Finally, we use the bounds to propose a
routing mechanism with negligible flow-control overhead by
either policing the network at the source or introducing a small
internal speedup in the network.

While delay bounds are essential for guaranteeing QOS,
another useful application is in studying reordering of packets
caused by load balancing algorithms. In order to deliver
packets in order, packets are sorted at the destination according
to their sequence numbers in reorder buffers (ROBs). The size
of the ROB is also a function of the delay packets can incur
over the different paths in the network leading to the same
destination. Bounding the size of the ROB as a function of
the delay distribution remains an open question.

REFERENCES

[1] B. Char, K. Geddes, B. G.H. Gonnet, M. Monagan, and S. Watt., Maple
V Language Reference Manual. Springer-Verlag New York, Inc., 1991.

[2] C. Clos, “A study of non-blocking switching networks,” The Bell System
technical Journal, vol. 32, no. 2, pp. 406–424, March 1953.

[3] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J.-H.
Ahn, N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck,
“Merrimac: Supercomputing with Streams,” in Proceedings of Super-
Computing, SC’03, Phoenix, Arizona, November 2003.

[4] D. Eun and N. Shroff, “Network decomposition in the many-sources
regime,” Advances in Applied Probability, vol. 36, no. 3, pp. 893–918,
September 2004.

[5] D. Y. Eun and N. B. Shroff, “Simplification of network analysis in large-
bandwidth systems,” in Proceedings of IEEE INFOCOM, San Francisco,
California, April 2003.

[6] L. Kleinrock, Queueing Systems – Volume 1: Theory. Wiley, New York,
1975, pp. 191–194, Eqn 5.85.

[7] C. Leiserson, “Fat-trees: Universal networks for hardware efficient
supercomputing,” IEEE Transactions on Computer, vol. C-34, no. 10,
pp. 892–901, October 1985.

[8] G. Pfister, An Introduction to the InfiniBand Arechitecture
(http://www.infinibadta.org). IEEE Press, 2001.

[9] A. Singh and W. J. Dally, “Delay and buffer bounds in high radix
interconnection networks,” Concurrent VLSI Architecture (CVA) Tech-
nical Report (ftp://cva.stanford.edu/pub/publications/arjun bounds.pdf),
Oct 2004.

[10] D. Wischik, “Sample path large deviations for queues with many inputs,”
Annals of Applied Probability, vol. 11, no. 2, pp. 379–404, May 2001.

[11] D. J. Wischik, “The output of a switch, or, effective bandwidths for
networks,” Queueing Syst. Theory Appl., vol. 32, no. 4, pp. 383–396,
1999.

[12] D. Yates, J. Kurose, D. Towsley, and M. Hluchy, “On per-session end-
to-end delay distributions and the call admission problem for real-time
applications with qos requirement,” Journal on High Speed Networks,
vol. 3, no. 4, pp. 429–458, 1994.

