
Delay and Buffer Bounds in High Radix Interconnection Networks

Abstract

We apply recent results in queueing theory to propose a
methodology for bounding the buffer depth and packet delay
in high radix interconnection networks. While most work in
interconnection networks has been focused on the through-
put and average latency in such systems, few studies have
been done providing statistical guarantees for buffer depth,
packet reordering and packet delays. These parameters are
key in the design and performance of a network. We present
a methodology for calculating such bounds for a practi-
cal high radix network and through extensive simulations
show its effectiveness for both bursty and non-bursty injec-
tion traffic. Our results suggest that modest speedups and
buffer depths enable reliable networks without flow control
to be constructed.

1 Introduction

High radix Interconnection networks are widely used in
supercomputer networks (Merrimac Streaming Supercom-
puter [3]) and for I/O interconnect (Infiniband Switch fab-
ric [12]). Most research for such interconnection networks
focuses on analyzing the throughput and average packet la-
tency of the system. However, little work has been done
towards bounding the occupancy of the buffers in the net-
work or the delay incurred by a packet.

The buffer occupancy and the delay distributions play
a key role in the design and performance of the network.
Bounding the number of packets in a buffer in the network
is valuable for network administration and buffer resource
allocation. A statistical bound on the packet delay is es-
sential for guaranteeing Quality of Service for delivery of
packets. Moreover, the delay distribution is directly related
to packet reordering through the network.

Queueing theory [8] provides a huge body of useful re-
sults which apply to product-form networks. Unfortunately,
these results rely on unrealistic assumptions (the most unre-
alistic being independent exponentially distributed service
times at each node as opposed to deterministic service in a
real system), and therefore people are reluctant to make use
of them. The analysis of a network of deterministic service

queues is a known hard problem. The difficulty in analysis
primarily arises from the fact that the traffic processes do
not retain their statistical properties as they traverse such a
network of queues.

Given a myriad of sophisticated techniques developed
for analyzing a single deterministic service queue, there has
been some recent work that attempts to decompose the net-
work based on large deviations techniques [14, 15]. Most
of these results are applicable in convergence regimes, such
as in the case when there are several flows passing through
a queue, called the many sources asymptotic regime. Us-
ing the many-sources-aysmptotic, Wischik [14, 15] shows
that the distribution of a traffic flow is preserved by pas-
sage through a queue with deterministic service, in the limit
where the number of independent input flows to that queue
increases and the service rate and buffer size increase in pro-
portion. More recently, Shroff et al [6, 5] use similar conver-
gence results to significantly simplify the analysis of such a
network. In particular, they show that, if internal nodes in a
network are capable of serving many flows, we can remove
these nodes from consideration and the queueing behavior
of other network nodes remains largely the same.

In this paper, we use the aforementioned convergence
results to bound the queue depth and packet delay in high
radix interconnection networks. Our simulations show that
such convergence results start to kick in when the radix (de-
gree) of the nodes is as small as �� � ��. We also use our
bounds to study the reordering of packets through the net-
work and to propose a routing mechanism with almost no
flow control overhead.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews recent convergence results in queueing the-
ory. Section 3 discusses how such results can be applied
to high radix fat tree interconnection networks. Simulation
results are then presented in Section 4. Section 5 discusses
the application of such bounds in studying packet reorder-
ing and in simplifying the flow control mechanism. Finally,
Section 6 concludes.

2 Many Sources Queueing Regime

As discussed in Section 1, a recent result by Shroff et al
[6, 5] shows how network analysis can be simplified when

1

the queues in the network carry several flows (called the
many sources regime). The authors prove that when an
upstream queue serves a large number of traffic flows, the
queue length of a downstream queue converges to the queue
length of a simplified single queueing system obtained by
just removing the upstream queue.

NC

A(s,t)

A’(s,t)

D(s,t)

D’(s,t)

R(s,t)
QN(t)

Q1(t)

Figure 1. An upstream queue feeding some
flows into a downstream queue

Consider the set up of two FIFO queues in Figure 1. Let
there be � flows going into the upstream queue. The subset
of these flows that go on into the downstream queue have
a combined arrival process given by ���� �� which is the
total number of packets arriving in the time interval ��� ��.
The remaining set of flows have arrival process� ���� ��. Let
the service capacity of the upstream queue be ��, i.e. the
service per flow is � packets per time step. The departing
flows from the first queue going into the downstream queue
have a departure process given by ���� ��. The downstream
queue can also receive more cross traffic given by ���� ��.
Let the queue depth of the downstream queue at time � be
����� while that for the upstream queue be �����. In or-
der to find the Prob��� 	
�, we can simplify the above
scenario into just one queue.

Figure 2 shows a simplified scenario of Figure 1. In this
figure, the effect of the upstream queue on flows ���� ��
is ignored. Let the queue depth of the downstream queue
for this scenario be �����. The authors of [5] prove that
as � � �, Prob��� 	
� converges to Prob��� 	
�
and that the speed of this convergence is exponentially fast.
Hence, with a modest number of multiplexed sources, the
convergence results start to hold.

A(s,t)

R(s,t) Q2(t)

Figure 2. Simplified scenarion of the set up of
two queues

At first glance, it may seem that the flows traversing the
upstream queue should get “rate shaped”, making the de-
parture process over a time interval �, ���� ��, smoother

than the corresponding arrival process ���� ��. However, on
closer analysis, this need not be the case. Consider an indi-
vidual flow, �, traversing the upstream queue and going to
the downstream queue. Its arrival process is ����� �� and de-
parture is ����� ��. Now the arrival and departure processes
are related as: ����� �� � ����� �����

� ������
� ���, where

��
� ��� and ��

� ��� are the backlog of flow � in the upstream
queue at times � and �, respectively. Due to fluctuations in
the queue depth and the interaction among the � flows in
the upstream queue, ��

� ��� can be larger than ��
� ���, mak-

ing the departure process for that flow larger than the arrival
process.

3 Application to High Radix Fat Trees

In the rest of this paper, we shall apply the many sources
regime results to analyzing buffer depth in a popular high
radix topology — Clos [2] or fat tree networks [9]. The
high radix switch queues are an appropriate application for
the many sources asymptotic results. As the radix (and the
number of sources) increases, the statistical properties of
the flows get preserved as they traverse the network. Our
simulations show that the convergence results hold for a
radix as small as ��� ��.

In our experimental set up, we have simulated a specific
kind of fat tree — a �-ary
 tree network [11]. A �-ary

tree network has
 levels of internal switches and a total of
�� leaf nodes that can communicate with each other using
these switches. There are
���� internal switches which
have �� incoming ports and �� outgoing ports. The internal
switches have buffers inside where packets are stored and
serviced to their appropriate output port. Figure 3 shows a
diagram for a �-ary 	 tree.

Figure 3. A 2 ary 4 tree

In our simulations, we will concentrate on high radix
trees where � is of the order of �� or ��. Figure 4 shows a
hierarchical schematic for a � ary � tree. There are two lev-
els of hierarchy denoted by levels � and � and three levels
of switches since
 � �. Depending on �, each entity of

2

Switch (Sw)

... Nodek-1Node0

A0

...

A1 Ak-1

k k k

Sw0 Sw1 Swk-1

Level A network

B0

...

B1 Bk-1

K2 K2 K2

Sw0 Sw1 Swk.k-1

Level B network

Figure 4. The k ary 3 tree used in our smulations

level � may be thought of as a board (or a backplane com-
prising several boards) while each entity of level � may be
thought of as a backplane (or cabinet). The wiring between
levels is abstracted out for simplicity.

Load balancing on such a fat tree is easily accomplished
using Random Root Routing (RRR) in which each packet
is routed to a randomly chosen root switch and then down
to the desired destination traversing a total of �
 � � in-
ternal switches (hops) for every packet. A more sophisti-
cated approach — called Random Common Ancestor Rout-
ing (RCAR) — is to route up to a (randomly chosen) com-
mon ancestor of the source and destination leaf node and
then down to the destination node. In our analysis, we fo-
cus on RRR as it enables us to treat all traffic patterns as
two phases of uniformly random traffic, thus making the
analysis more tractable. The analysis for RRR is also a con-
servative analysis for RCAR as the latter has strictly lesser
packets using the resources in the upper levels of the net-
work.

4 Results

In this section, we first study the impact of the radix on
the buffer occupancy distribution in the queues at each hop
of the fat tree network. Our approach is to first increase the
radix � in a � ary � tree network while keeping the per chan-
nel bandwidth constant. We then plot the Complementary

Cumulative Distribution Functions (CCDFs) of the queue
occupancy at each of the
 hops of the network. We perform
this experiment for non-bursty Bernoulli and bursty injec-
tion traffic. For both these injection processes, the many
sources convergence results start to manifest themselves at
reasonably small values of �. Using these values of �, we
can analytically calculate the exact CCDF from queueing
theory for each of the
 queues, thus giving us buffer depth
bounds. We then use the per hop buffer depth bound to
approximate the end-to-end delay of a packet through the
network by convolving the per-hop distributions obtained.
This approximation gives very accurate results especially at
high injection loads.

4.1 Increasing the radix �

In the very first experiment, we inject packets at each
source according to a non-bursty Bernoulli iid process.
Each source injects a packet with a probability � at every
time step. We increase the radix k of each switch and mea-
sure the queue depth at each of the
 hops of a �-ary � tree
network. Figure 5 shows that the CCDFs of the queues are
quite divergent for a low radix (� � �) but tend to con-
verge to almost identical as � is increased to ��. This is be-
cause, for a high enough radix, the statistical properties of
the flows are preserved as they traverse the network. Hence,
for the non-bursty injection process, a radix of �� is a rea-

3

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16 18

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

(a) (b)

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

(c) (d)

Figure 5. Queue depth at each hop of a k-ary 3 tree for (a) k=2 (b) k=4 (c) k=8 and (d) k=16

sonable working parameter to use the convergence results.

4.2 Analytically obtaining the CCDF

We now describe our analytical approach for obtaining
the CCDFs of the queue depths at each hop. For the �� ary
� tree case with non-bursty injection, it suffices to obtain
the CCDF for the first hop as the other hops behave almost
identically.

Let � be the random variable that represents the total
traffic at each time step to the queue at the first hop.

� �
��
���

�� (1)

where ��� ��� � � � �� are independent IID Bernoulli ran-
dom variables corresponding to the � sources such that if � �
is the probability that the source � will send a packet along
this queue, then

�� �

�
� ���� ��
� ���� �� � �� ��

(2)

From Equations 1,2 we get

���� �
��
���

��

Let the service capacity of the queue be � � � packet per
time step. If the queue is stable i.e., ���� � �, we can find
the Probability Generating Function (PGF)1 of the queue
size ���� using the formula derived in [8].

���� � � �� � ��
�� � ������

�� ������
(3)

In our case

���� �

��
���

��� � ���� and � �� � �� � ������ (4)

The derivation for � �� � �� is shown in Appendix A.
Moreover, �� � � for all � since all sources inject traffic
with the same probability. Using Equation 3 we can find
out the queue size distribution in the following way :

� �� �
� �
�

��
�

��

��
����

�
���

(5)

1The PGF, G, of a random variable, � , is given by ���� � ����� ��
�

���
������ , where � is the probability mass function for � .

4

Equation 5 can then be used to derive the CCDF for the
queue depth at each hop of the �� ary � tree network.

Figure 6 shows the analytically evaluated queue depth
with the error margins derived as in [5] against the measured
values obtained in the previous subsection. The queues at
each hop are at a utilization of ��� i.e., ������ � ���.
The model matches almost exactly with the simulations.
While the observed values were obtained through simula-
tions run for � days, the theoretical CCDF could be derived
in a matter of minutes using the Maple software [1] for solv-
ing Equation 5. The advantage is that we could quickly de-
rive the buffer depth required for which the overflow prob-
ability would be of the order of �����, something that was
not tractable by simulations alone.

1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001

0.01
0.1

1

0 5 10 15 20 25 30 35 40

n

P
 [D

ep
th

 >
=

n]

Q1 Q2 Q3 Q4 Q5 Theory

Figure 6. Analytically derived queue depth
against the measured queue depth at each
hop for a 16 ary 3 tree at 0.6 load

4.3 Approximating the delay CCDF

Having found the buffer depth distributions at each hop,
our next aim is to approximate the end-to-end delay of pack-
ets traversing the network. The latency, � , incurred by a
packet is the sum of two components, � � � ��, where
� is the hop count and � is the queueing delay. For the
�� ary � tree case, � �
. The random variable � is the
queueing delay incurred due to buffering at each of the hops
in the network. The per-hop delay in each queue is directly
related to the occupancy of the queue and its service capac-
ity. In order to find the distribution of �, we make the sim-
plifying assumption that the per hop delays at each hop are
independent of each other. This assumption has been shown
to give accurate results in practice especially as the load is
increased [16]. This is because, as the buffer load increases,
the output of a queue (which is the input to the downstream
queue) gets less correlated with the input process.

Using this independence assumption, we can find the dis-
tribution of � by simply convolving the per-hop delay dis-

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120

n

P
 [D

el
ay

>=
n]

Theory Load = 0.2 Sim Load = 0.2 Theory Load = 0.6

Sim Load = 0.6 Theory Load = 0.8 Sim Load = 0.8

Figure 7. End-to-end packet delay (theoretical
and measured) for a 16 ary 3 tree at different
injected loads

tributions calculated before. Convolving the distributions is
equivalent to simply taking the product of their PGFs. For
the case when the service is � packet per time step, � is
given by

���� �
��
���

����� (6)

Finally, adding a constant � to � gives us the end-to-
end delay distribution.

Figure 7 compares the analytical delay CCDF with the
measured values for injection loads of ���, ��� and ���.
As expected, the analytical and observed plots are a close
match for the highest load of ��� and are reasonably good
approximations for the lower loads.

4.4 Bursty Flows

The radix at which reasonable convergence holds de-
pends on the size of the network and the nature of the in-
jection sources. In this subsection, we use bursty sources
for injection into the network instead of the non-bursty
Bernoulli sources that we have used thus far. The injec-
tion process is now based on a simple Markov ON/OFF
process which produces packet bursts that are geometrically
distributed with average burst length of
 packets. We re-
peat the same set of experiments as in the Bernoulli injec-
tion case.

As we increase the radix �, keeping the load fixed at ���
and the per channel bandwidth constant, we once again ob-
serve a convergence in the CCDFs of queue lengths at dif-
ferent hops. For the bursty case, the CCDFs for � � �� do
not converge as well as in the Bernoulli case (Figure 8) and
a reasonable convergence is observed at a higher value of
� � �� (Figure 9).

5

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50

n

P
 [D

ep
th

>=
n]

Q1 Q2 Q3 Q4 Q5

Figure 8. Queue depth at each hop of a 16 ary
3 tree for bursty traffic and 0.6 load

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35

n

P
 [D

ep
th

>=
n]

Q1 Q2 Q3 Q4 Q5

Figure 9. Queue depth at each hop of a 32 ary
3 tree for bursty traffic and 0.6 load

The analytical derivation of the queue depth for such a
correlated, bursty injection process is mathematically in-
volved and is beyond the scope of this paper. The interested
reader is referred to [7] for more details. In order to evaluate
the end-to-end delay CCDF for the bursty case, we use the
measured distribution for the queue delay at the first queue
and convolve it five times to get the delay distribution. As
seen in Figure 10, the CCDF obtained by the convolution is
very close to the measured delay CCDF for � � ��.

5 Discussion

5.1 Using buffer bounds to disable flow control

An interesting fallout from deriving buffer depth bounds
is that we can use them to make the flow control of the pack-
ets trivial. In practice, the packets traversing the network
need to be allocated resources before they can actually use
them. This process of allocation of network resources is
called flow control. The most commonly used flow control

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

n

P
 [D

el
ay

>=
n]

Theory Load = 0.6 Sim Load = 0.6

Figure 10. End-to-end packet delay for a 32
ary 3 tree for bursty traffic at an injected load
of 0.6

mechanism for allocating buffers to packets is the credit-
based flow control [4] (Chapter ��). In order to not drop
packets, a packet in the upstream node does not leave for
the downstream node until it gets a credit signifying there
is enough buffer space available there. If we were to send
a packet to the downstream node ignoring this flow control
information, the packet would be dropped if there was no
space in the downstream node. However, we can set our
buffer depths to a reasonable size and make sure that the
probability of a drop due to buffer overflow is substantially
lower than the probability of a drop due to a hard error. In
order to do this, we must either police the injection process
or provide a modest internal speedup to the network.

Take, for instance, the non-bursty injection process on a
�� ary � tree. We have successfully computed the buffer
depth requirement for a particular injection load of ���
that has a very low probability of exceeding (of the order
�����). Repeating our calculations for different loads, we
can study how the buffer depth requirements grow as the
load is increased keeping the probability of overflow con-
stant at �����.

Figure 11 shows that as the injected load reaches the sat-
uration value of �, the buffers start to grow without bound.
However, at slightly less than this saturation value, say ���,
a buffer size of ��� packets is required to ensure that the
drop probability without flow control is less than �����.
Hence, either by policing the injection to make sure that the
injection rate stays below ��� or by providing a small in-
ternal speedup of ����� � ����, we can eliminate the flow
control overhead from the routing process. A similar analy-
sis can be carried out for other injection processes.

6

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Load

B
uf

fe
r

de
pt

h
n

su
ch

 th
at

 P
 [D

ep
th

 >
=

 n
] <

 =
 1

0^
-1

5

Figure 11. Buffer depth requirement at vari-
ous injection loads

5.2 Bounding the reordering of packets

While load balancing algorithms such as RRR and
RCAR increase the throughput of the network, they also
reorder the packets traveling from a particular source, �, to
a particular destination, �. This happens because packets
are sent over different paths with potentially different de-
lays from � to �. For instance, Figure 12 shows packets sent
over � different paths. The black packet is the next packet
expected by � but it is delayed in the congested path ��. To
deliver packets in sequence to �, the other packets (which
were injected later than the black packet but reached earlier)
must be stored and reordered in a Reorder Buffer (ROB) us-
ing the well known sliding window protocol [13].

s
d

ROB

P1 P2 P3

Figure 12. Reordering of packets sent over �
different paths

At each destination, there must be a ROB corresponding
to each source. Choosing the size of each ROB is critical
to the throughput of the network. If the ROB becomes full,
it will apply backpressure to the rest of the network fab-
ric to prevent dropping of packets leading to a reduction in

network throughput. Hence, we must evaluate a ROB size
such that the probability of it getting full is less than that of
a hard error.

Unlike the case of the switch buffers discussed thus far,
the ROB occupancy varies with traffic patterns. Consider a
permutation traffic pattern like Bit Complement (BC) and
one that is not a permutation, Uniform Random (UR). In
BC, � sends packets to a fixed destination, �����, where
� is the total number of destinations while in UR, � sends to
a randomly chosen destination. Since reordering occurs for
source-destination pairs, permutation patterns use only one
ROB at each destination sending more traffic to each ROB
than a non-permutation traffic like UR. Consequently, the
ROB occupancy for any permutation is bigger than that for
a non-permutation traffic for the same injection load. For
this reason, we focus on the BC traffic pattern for our ROB
size calculations.

Let us denote the CCDF for the delay that we evaluated
in Section 4.3 by ��, i.e., �� � � ������ � ��. Let the load
on the network be a fraction � of its capacity. Let �� be the
occupancy of each reorder buffer. Then, for our canonical
example of non-bursty Bernoulli arrivals, we can theoreti-
cally bound �� as follows:

Claim 1. For non-bursty Bernoulli arrivals, if � �
� ������ � �� � �� �����, then

� ��� � �� �

��
���

 � �
�������	��
�� (7)

where !� � �
���"�� and "� � �
����
���

������

Proof. The proof is presented in Appendix B.

1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001

0.01
0.1

1

0 5 10 15 20 25

n

P
 [R

O
B

 s
iz

e
>=

 n
]

Simulation Load = 0.8 Bound Load = 0.8

Figure 13. Bounding the Reorder Buffer Oc-
cupancy

7

Using the delay distribution derived previously, we can
evaluate Equation 7 to get a bound on the ROB occupancy.
Figure 13 compares the theoretical bound with the simu-
lated ROB occupancy for an injection load of ���. The prob-
ability of overflow for a ROB of size �� packets is less than
�����. Repeating our calculations for different loads en-
ables us to study how the ROB size requirement grows with
load for the same overflow probability.

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

load

R
O

B
 d

ep
th

, d
, s

uc
h

th
at

 P
 [D

ep
th

 >
 d

] <
 1

0^
-1

5

Figure 14. ROB size requirements at various
injection loads

Figure 14 shows the required ROB size with increasing
injection load. As in the case of the switch buffers, the ROB
size also grows without bound as the load reaches the satu-
ration value. At a load of ��� or less, we require at most ��
packet sized ROBs for packets to be reliably reordered and
delivered to their destination. A similar calculation can be
carried out for bursty injection.

6 Conclusion and Future work

In this paper, we have used recent convergence results
in queueing theory to propose a methodology for bounding
the buffer depth and packet delay in high radix intercon-
nection networks. We have presented extensive simulations
for both non-bursty and bursty injection traffic and show
that the convergence results start to kick in for radix val-
ues as small as �� � ��. Using the delay distributions, we
study packet reordering in the network and estimate bounds
for the reorder buffer size in the network. Finally, we use
the bounds to propose a routing mechanism with negligible
flow-control overhead by either policing the network at the
source or introducing a small internal speedup in the net-
work.

The advantages of disabling flow control are manifold.
Significant bandwidth is saved which is otherwise used up
by flow control credits. Moreover, practical flow control
methods like credit based flow control can require substan-
tial buffer space to maintain full throughput on a single vir-

tual channel. We are currently doing a study to quantify the
overhead cost of flow control in interconnection networks.

The methodology described in this paper is applicable
only to oblivious routing algorithms. For adaptive algo-
rithms, which make routing decisions taking the network
state into account, there is no known technique for evalu-
ating statistical guarantees. However, in practice, adaptive
algorithms perform better in the average case compared to
oblivious routing algorithms. Developing a technique for
bounding delay and buffer depth for adaptive routing re-
mains an open question.

References

[1] B. Char, K. Geddes, B. G.H. Gonnet, M. Monagan, and
S. Watt. Maple V Language Reference Manual. Springer-
Verlag New York, Inc., 1991.

[2] C. Clos. A study of non-blocking switching networks. The
Bell System technical Journal, 32(2):406–424, March 1953.

[3] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte,
J.-H. Ahn, N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju,
and I. Buck. Merrimac: Supercomputing with Streams. In
Proceedings of SuperComputing, SC’03, Phoenix, Arizona,
November 2003.

[4] W. J. Dally and B. Towles. Principles and practices of in-
terconnection networks. Morgan Kaufmann, San Francisco,
CA, 2004.

[5] D. Y. Eun and N. B. Shroff. Simplification of network anal-
ysis in large-bandwidth systems. In Proceedings of IEEE
INFOCOM, San Francisco, California, April 2003.

[6] D. Y. Eun and N. B. Shroff. Network decomposition in
the many-sources regime. Advances in Applied Probability,
36(3):893–918, September 2004.

[7] H. S. Kim and N. B. Shroff. Loss probability calcula-
tions and asymptotic analysis for finite buffer multiplex-
ers. IEEE/ACM Transactions on Networking, 9(6):755–768,
2001.

[8] L. Kleinrock. Queueing Systems – Volume 1: Theory., pages
191–194, Eqn 5.85. Wiley, New York, 1975.

[9] C. Leiserson. Fat-trees: Universal networks for hardware-
efficient supercomputing. IEEE Transactions on Computer,
C-34(10):892–901, October 1985.

[10] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge Univ. Press, 1995.

[11] F. Petrini and M. Vanneschi. �-ary �-trees: High Perfor-
mance Networks for Massively Parallel Architectures. In
Proceedings of the 11th International Parallel Processing
Symposium, IPPS’97, pages 87–93, Geneva, Switzerland,
April 1997.

[12] G. Pfister. An Introduction to the InfiniBand Arechitecture
(http://www.infinibadta.org). IEEE Press, 2001.

[13] A. S. Tanenbaum. Computer Networks, 3rd ed. Prentice
Hall, 1996. Pages 202-219.

[14] D. J. Wischik. The output of a switch, or, effective
bandwidths for networks. Queueing Syst. Theory Appl.,
32(4):383–396, 1999.

8

[15] D. J. Wischik. Sample path large deviations for queues with
many inputs. Annals of Applied Probability, 11(2):379–404,
May 2001.

[16] D. Yates, J. Kurose, D. Towsley, and M. Hluchy. On per-
session end-to-end delay distributions and the call admission
problem for real-time applications with qos requirement.
Journal on High Speed Networks, 3(4):429–458, 1994.

A Finding � �� � ��

In order to find � �� � �� for the set up described in
Section 4.2, let us construct the time series equation for the
queue depth, �. If �� is the depth of the buffer at the end
of time slot
, then the occupancy in the next step will in-
crease by the number of arrivals at slot
 � � and decrease
by � (�) if the queue is non-empty (empty) at time
. Math-
ematically, this means

���� � �� ����
����� (8)

where �� is a shifted discrete step function

�� �

�
� � � �� �� � � �

� � � �
(9)

Let us take expectations on both sides of Equation 8.
Since, at steady state, we can drop the subscripts we have

���� � ���������� ����� (10)

Now, from Equation 9 it is obvious that ����� � � �� 	
��. Substituting in (10), we get

� �� � �� � ������

B Proof of Claim 1

In order to find � ��� � ��, we must find the probability
of the event that while the ROB is waiting for the next in-
sequence packet (call it �), � or more packets injected after
� arrive at the ROB. Without loss of generality, let � be
injected by the source at time �. Once � arrives at the ROB
after some delay, �, the buffer starts to drain. We need to
count the number of packets that are generated and reach the
ROB through paths different from that of � in the interval
��� ��. The probability that this number exceeds � for all �
is equivalent to � ��� � ��.

Figure 15 shows the time-line for packet �. For each
discrete time step, �, in the interval ��� ��, define an indicator
variable, ��, such that �� � � if a packet is generated at time
� and also reaches the ROB with a delay less than � � � 2.

2For simplicity, we ignore the probability that the packet will follow
the same path as � as the number of paths to the destination is large.

0 di

τ < d-i

Delay = d

Figure 15. Time-line for deriving ROB occu-
pancy

Since the load is � and the delay CCDF is ��, we have

�� �

�
� ���� ���������

� ����

Then, if � �� delay is given by a random variable �� ,

� ��� � �� �

��
���

� ��� � ��� ��� � ���� � �� (11)

Now, � ��� � �� � � � �� � ���� and for a
fixed �� � �, �� �

��

��� ��. Thus, to find a bound on
� ��� � ��, we need to bound the probability that the sum
of the Bernoulli variables �� exceeds �. We use a Chernoff
bounding technique similar to the one used in [10].

For a fixed �� � �, and any !� 	 �,

� ��� � �� � � ��
�
��

���
� � �
��� �

	�

������
�
� �

�
��

The RHS of the above inequality can be simplified to
��

��������
���������������

����
. Finally, using the fact that � �

 � ��, we can simplify the inequality to

� ��� � ���� � �� � ���
�����	��
�� (12)

where "� � �
����

��� ������.
To get the tightest bound, we must minimize the expo-

nent in the RHS of Equation 12. Solving, we get !� �
�
���"��. Substituting in Equation 11, we get the desired
result.

9

