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Guaranteed Scheduling for Switches
With Configuration Overhead
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Abstract—In this paper, we present three algorithms that
provide performance guarantees for scheduling switches, such as
optical switches, with configuration overhead. Each algorithm em-
ulates an unconstrained (zero overhead) switch by accumulating
a batch of configuration requests and generating a corresponding
schedule for a constrained switch. Speedup is required both to
cover the configuration overhead of the switch and to compensate
for empty slots left by the scheduling algorithm. Scheduling
algorithms are characterized by the number of configurations

they require to cover a batch of requests and the speedup
required to compensate for empty slots min. Initially, all switch
reconfiguration is assumed to occur simultaneously. We show that
a well-known exact matching algorithm, EXACT, leaves no empty
slots (i.e., min = 1), but requires 2 configurations for
an -port switch leading to high configuration overhead or large
batches and, hence, high delay. We present two new algorithms
that reduce the number of configurations required substantially.
MIN covers a batch of requests in the minimum possible number
of configurations, = , but at the expense of many empty
slots, min 4 log

2
. DOUBLE strikes a balance, requiring

twice as many configurations, = 2 , while reducing the
number of empty slots so that min = 2. Loosening the restric-
tion on reconfiguration times, the scheduling problem is cast as
an open shop. The best known practical scheduling algorithm
for open shops, list scheduling (LIST), gives the same emulation
requirements as DOUBLE. Therefore, we conclude that our
architecture gains no advantages from allowing arbitrary switch
reconfiguration. Finally, we show that DOUBLE and LIST offer
the lowest required speedup to emulate an unconstrained switch
across a wide range of port count and delay.

Index Terms—Optical switches, packet switching.

NOMENCLATURE

Element of matrix .
Cumulative request matrix, the sum of the switch
configurations requested over a period of time; the
rows and columns sum to the number of configura-
tions requested.

where rows and columns sum to.
Switching overhead in slot times.
Batch scheduling time in slot times (rounded up to
the nearest integral number of batch timesto allow
pipelining).
Number of switch ports.
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Number of switchings per batch.
Switch configuration interval (weight).
Internal speedup of switch.
Switch configuration/permutation matrix.
Batch size in slot times.

I. INTRODUCTION

OPTICAL switches based on MEMs mirrors, tunable
elements, bubble switches, and similar technologies

[1]–[5] have been developed to meet the exponentially in-
creasing demand for switch bandwidth and port count. These
optical switching technologies offer high bandwidth in an
economical manner. Switches built with these technologies,
however, require significant time to reconfigure due to me-
chanical settling, synchronization, and other factors. These
configuration overheads range from milliseconds for bubble
and free-space MEMs switches [2], [3], to 10 for MEMs
waveguide switches [4], and as little as 10 ns for electroholo-
graphic techniques [5]. With typical cell sizes on the order of
50 ns (64 bytes at 10 Gb/s), these switches take from 0.2 to
20 000 cell times to reconfigure. Efficiently scheduling such
optical switches requires algorithms that take this configuration
overhead into account and optimize the resulting schedule.

Algorithms and architectures for unconstrained (zero over-
head) switches often rely on the fact that switches arestateless:
any configuration can be presented eachslot timewith no differ-
ence in switch behavior. The configuration overhead of optical
switches introduces state: a switching overhead is experienced if
the current switch configuration differs from the previous slot’s
configuration.

This paper develops an architecture and algorithms for
using a constrained switch to exactly emulate the behavior
of a unconstrained switch with a fixed delay. As long as the
system employing the switch can tolerate the fixed delay, the
emulation architecture can directly replace an unconstrained
switch. In essence, emulation decouples the constraints of
nonzero switching overhead from the classic switch scheduling
problem. This allows designers to use optical signaling and
switching directly with existing architectures and scheduling
algorithms. Unlike previous algorithms that perform best effort
scheduling of constrained switches [6]–[8], the algorithms we
present give guaranteed performance.

The emulation architecture operates by accumulating a batch
of switch requests and then mapping this batch onto a set of

switch configurations. Reducing the number of config-
urations reduces the time spent reconfiguring the switches and,
hence, reduces the delay required for emulation. However, there
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is a tradeoff as aggressive reduction in the number of configu-
rations can lead to a large number of empty slots and, hence,
require a large speedup.

We first examine switching technologies that do not allow
reconfiguration of some switching elements while others con-
tinue to transmit. Under this consideration, we explore three
algorithms that span the design space of the number of con-
figurations versus the number of empty slots. At one end of
the design space, a well-known exact decomposition algorithm,
EXACT [7], generates a schedule with no empty slots but re-
quires configurations (where is the number of
ports) and, therefore, a very high delay. At the other extreme,
we introduce a new algorithm, MIN, that generates a minimum
number of configurations , but leaves most slots empty
and requires a switch speedup of . We balance delay
and speedup with another new algorithm, DOUBLE, that re-
quires twice the minimum number of configurations ,
but leaves at most half of the slots empty, thus, requiring a switch
speedup of 2.

The restriction on switching times is then removed and we
show that the resulting system can be considered as an open shop
scheduling problem. List scheduling (LIST) [9] is then applied
to the problem, ultimately yielding the same balance in switch
configurations as DOUBLE. Given that LIST is a practical algo-
rithm with the best known bound for open shop scheduling [10],
[11], it follows that our architecture does not gain an advantage
from a switching technology that allows some switching ele-
ments to be reconfigured while others continue to transmit.

We then compare the speedup and delay overheads of all the
algorithms across the space of switch sizeand delay . Our
results show that DOUBLE and LIST offer the lowest overheads
of the algorithms across a wide portion of this space. EXACT
offers better performance only for low port count or high delay,
and MIN offers better performance only for very low delays.
Viewed another way, for a fixed overhead, DOUBLE and LIST
require much lower delay for emulation than EXACT at the ex-
pense of a speedup of two. For example, for a port
MEMS switch with a configuration time of 10s, EXACT re-
quires a minimum delay of 320 ms while DOUBLE and LIST
can operate with a delay of 5 ms. We also simulate the average
case performance of the algorithms, which is an important de-
sign consideration in systems that include a mix of both best
effort and guaranteed data for the switch. The simulations show
the average number of empty slots is only a fraction of their
worst case bounds, while the average number of switch config-
urations required is generally close to the worst case bound.

The remainder of this paper explores the design of algorithms
that provide service guarantees for switches with configuration
overhead in more detail. Section II introduces a simple switch
model used throughout the paper. The emulation architecture is
detailed in Section III. Section IV introduces three algorithms
under the constraint of simultaneous reconfiguration and
discusses their performance guarantees. The constraints on
switching times are removed in Section V and the scheduling
problem is cast as an open shop. Section VI compares all of
the algorithms in terms of overhead and delay as a function of
switch ports. Related work is discussed in Section VII. Finally,
conclusions are drawn in Section VIII. Correctness proofs for
the new algorithms are included in the Appendix.

Fig. 1. Emulation architecture. The dashed boundary operates as an
unconstrained switch plus a fixed delay, while the internal crossbar is
implemented with a constrained switch. Both input and output buffers as well
as a central scheduler are required for emulation.

II. PRELIMINARIES

This paper deals with scheduling of a crossbar switch that can
realize any one-to-one (unicast) mapping of inputs to outputs.
Such a mapping is described by aswitch configuration , where

is a permutation matrix; when an element is one, input
is connected to outputfor that configuration. Multicast traffic
is not considered. Time is slotted and a new configuration may
be provided to the crossbar eachslot time.

Unlike typical electronic switches, the model also associates a
fixed, nonzeroswitching overhead with eachswitching event
(any change in the switch configuration). The fixed switching
overhead is intended to capture all effects, such as mechanical
settling times and synchronization overhead, that temporarily
prevent transmission as a switching element is reconfigured. An
unconstrainedswitch has , whereas aconstrainedswitch
has . We express in units of slot times.

III. A RCHITECTURE

We emulate an unconstrained switch using a constrained
crossbar with input and output queues (Fig. 1) where the
constrained crossbar hasspeedup to compensate for its
switching overhead . The dashed boundary represents the
standard unconstrained interface: inputs, outputs, and a
configuration input. The speedup refers to the ratio of the
internal line rate to the input line rate. The input and output
queues enable this rate mismatch by physically decoupling the
internal and external lines.

A. Emulation Approach

The scheduler in Fig. 1 performs pipelined batch scheduling
in four phases. In the first phase, a batch is created by accumu-
lating the requested configurations over an interval such
that

Later phases may reorder the data, so incoming data is tagged
with its arrival time, allowing the original order to be restored.
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Fig. 2. Batch timeline forH = 2T showing two batches,a andb, as they
traverse the emulation phases. Note that botha andb can exist in the scheduling
phase (phase 2) simultaneously because there are no dependencies between
batches and scheduling resources can simply be duplicated. A single packet is
also shown in gray with an arc connecting its entrance and exit times from the
emulation architecture.

The second phase computes a switch schedule for the batch.
While the time to compute a batch’s scheduleis assumed
to be a multiple of the batch time, it is not necessary that

. The pipeline diagram shown in Fig. 2 illustrates the
case when . Since each batch processed by the switch
is independent, multiple batches may be scheduled in parallel
given that sets of switch scheduling hardware exist.

Once the schedule for a batch is computed, it is executed by
the constrained switch during the third phase. The critical guar-
antee necessary for the architecture to emulate an unconstrained
switch is that the third phasenevertakes longer than the batch
time . This guarantee also ensures that no data element stays
in the input queues for more than slot times. After tra-
versal, data is reordered as it is stored in the output buffers.1

Finally, the fourth phase simply sends the data from the output
buffers onto the output lines in the same order it entered the
switch. As shown by the arc between an arriving data element
and its departure from the switch (Fig. 2), this relationship im-
plies a delay bound of when slot times are reserved
for the second phase scheduling. Therefore, the outputs exactly
emulate the behavior of a corresponding unconstrained switch
plus the fixed delay of .

As expected, the amount of storage required in the architec-
ture grows linearly with . Let indicate the number of bits sent
to a single input port during a slot time. Considering one port,
a batch is held for slot times in the input buffers and
since a new batch is started eachslot times, enough buffers
for bits of data are required in the input stage. Simi-
larly, data is held for slot times in the output stage, requiring

bits of buffering. So, considering all ports, the architecture
needs bits of total buffering.

B. Emulation Requirements

To compensate for the overhead of switch configuration and
slots left empty by the scheduling algorithm, the emulation ar-
chitecture must operate with a speedupthat depends on the
batch size as illustrated in Fig. 3. is selected to ensure that

can be completely transmitted during the third phase of

1If a particular design only requires that packets between each input–output
pair remain in order, no ordering tags are required and no reordering is required
at the end of the third phase.

Fig. 3. Speedup required for emulation (N = 128, � = 1). BothT and
S are assumed to be constants for this example.

the emulation algorithm. The time spent on configuration over-
head during each batch of configurations is ,
the left asymptote of the versus curve. This leaves time

to send slots of data. If the scheduling algorithm
exactly filled each of the slots with data, the speedup required
would be .2

Not all algorithms completely fill the slots, however. So the
total number of slots used by a scheduling algorithmcan be
greater than in general. Thus, the speedup required to com-
pensate solely for these empty slots is , which
gives the bottom asymptote of theversus curve. Viewed
another way, the fraction of slots filled by the scheduling algo-
rithm is . So, for example, if half the slots are filled with
data, an additional speedup of is required beyond
the speedup necessary to compensate for switching over-
head.

Multiplying these two speedups gives the total speedup re-
quired for a particular batch size

This relationship can be also rewritten to give the batch size
required for a particular speedup

IV. SCHEDULING WITH SIMULTANEOUS RECONFIGURATIONS

The scheduling task is a time-slot assignment problem. Given
an input–output request matrix, assign a switch traversal time
for each element in so that the total transmission time is min-
imized. Emulation also requiresguaranteesabout the perfor-
mance of scheduling algorithms. That is, for any matrixand
switching overhead, the worst case transmission time required
for a scheduling algorithm must be bounded.

We first approach this problem by finding decompositions
of the request matrix into permutation matrices, such
that . Specifically, a set of switch configurations

2While bothT andS are constants in all the algorithms presented in
this paper, it also possible for their values to vary withS, T , and/or�.
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and corresponding weights
thatcovers is found during phase 2 of the pipeline:

In the case of equality for alland , the switch configurations
exactly cover . Then, during phase 3, the constrained switch is
configured in the sequence with each config-
uration held for slot times. All of the switching
elements in the constrained switch are reconfigured simultane-
ously.

The requirement of simultaneous reconfiguration arises due
to technological constraints of specific systems. For example,
issues such as optical crosstalk in a free-space optical switch or
coupling between mechanical switching elements may prevent
switches from being reconfigured while others continue to
transmit. Also, related problems, such as scheduling SS/TDMA
systems (Section VII), require simultaneous reconfiguration.
This constraint is loosened in Section V.

This section presents several algorithms for achieving guar-
anteed performance with simultaneous reconfigurations and ex-
amines the tradeoff between the number of switch configura-
tions used to cover the matrix and the number of empty slots
left by the algorithm. An example of this tradeoff is illustrated in
Fig. 4. First, a request matrix is decomposed into four switch
configurations that exactly cover [Fig. 4(a)]. The accompa-
nying time-slot assignment diagram shows the connection of in-
puts (shown vertically) to particular outputs, denoted by slot la-
bels. The shaded segments show the switching time required be-
tween different configurations. An alternative decomposition of

gives only three switchings, but the corresponding time-slot
assignment contains empty slot times [Fig. 4(b)]. Since each
configuration is held for the maximum time of all the elements
contained within it, some slots are left unused. From this simple
example, it should be clear that fewer switchings require less
overhead time, but at the potential cost of leaving slots empty
during switch traversal. This tradeoff is quantified in the fol-
lowing sections.

A. Exact Covering

A well-known decomposition of any matrix [7], [12]
exactly covers the matrix in at most switch
configurations.

Theorem 1: switch configurations and
positive integer weights are necessary and suf-
ficient to exactly cover any matrix .

Proof: As noted in [13, p. 36], necessity is proved in [14]
and sufficiency in [12].

Several algorithms are suggested in [7] to realize the lower
bound on the number of configurations required. These algo-
rithms include optimizations to improve the average number of
configurations, but we consider a simple algorithm that only
meets the bound of configurations (Al-
gorithm 1). The EXACT algorithm repeatedly performs max-
imum-size matchings on the nonzero elements of(Step 2).
The weight of the corresponding configuration is taken as the
minimum value of all the elements of included in the match
(Step 3). This ensures that at least one element of the request ma-
trix is zeroed per iteration. Then the configuration is subtracted

(a)

(b)

Fig. 4. Tradeoff between fewer switch configurations and empty slots
(� = 1). (a) Decomposition into four configurations with no unused slots. (b)
Decomposition into three configurations resulting in the introduction of empty
slots into the schedule.

from request matrix and this procedure is repeated until all en-
tries of have been zeroed (Step 4). This algorithm always ter-
minates in iterations, meeting the lower bound.
Since each step requires a maximum-size matching of com-
plexity , the overall run time of EXACT is .

Algorithm 1 Exact Covering (EXACT)

Step 1) Initialization . Set i 1 and A C(T ).
Step 2) Bipartite match . Construct a bipartite

graph from A where each nonzero entry of
A has a corresponding edge in the graph.
Find a maximum-size matching M of this
graph.

Step 3) Schedule . Construct a permutation P (i)

which corresponds to the matching M .
Set the weight based on the minimum
entry value of A corresponding to the
edges of M : �(i) min(e;f)2M ae;f .

Step 4) Update and loop . Set A  A � �(i)P (i) and
i  i + 1. If any nonzero entries of A re-
main, go to Step 2. Otherwise end.

Given the bound on the number of switch configurations,
the total amount of switching overhead can be determined and,
therefore, the required speedup can be calculated.

Corollary 1: A speedup of

is sufficient to schedule in slot times.
Proof: This follows directly from the number of switch-

ings and the minimum speedup of
required for an exact covering.
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Note that the minimum fixed delay experienced by the switch,
, must grow at least with the square

of the number of ports on the switch. This implies the amount
of storage must also grow with . In a system where the
bandwidth between input–output pairs is expensive relative to
the cost of providing the storage and tolerating the fixed delay,
exact covering is an attractive approach. Since con-
figurations are necessary to exactly cover, further reducing
the number of switchings would introduce empty slots leading
to a waste of the expensive bandwidth. Alternatively, in systems
with inexpensive bandwidth a designer may be willing to trade
that bandwidth for a smaller fixed delay and less storage require-
ments.

B. Minimum Switchings

While configurations are necessary to exactly cover
, it is possible to cover any with as few as configurations.

This is clearly the minimum number of configurations ashas
nonzero entries in general and each configuration covers

at most of these entries. However, the use of fewer config-
urations introduces empty slots which must be overcome with
speedup. In this section, we show that cost of these empty slots
can be quite significant: for , is .

Theorem 2: To transmit a general cumulative schedule ma-
trix in switch configurations, must be at least

for .
Proof: An adversarial matrix is constructed by the fol-

lowing algorithm.3

Step 1) Initialization . Create two N � N

matrices, A and B. Initialize all
entries of A to zero and all en-
tries of B to one. Set i  1 and
j  1.

Step 2) Build A. Fill the submatrix

A(i : i+ j � 1; i : i+ j � 1) =
T 0

j

where T 0 = T � N . Set i  i + j and
j  j + 1. If i + j > N go to Step 3,
otherwise repeat Step 2.

Step 3) Create C. Set C  A+B and I  i.

From the construction of (Fig. 5), it is clear that each row
and column sums to . The rows and columns of each sum
to and, therefore, each row and column sum ofis .

The addition of the matrix to guarantees that there are no
nonzero elements in . Since all elements are covered in
switch configurations, each configuration must coverunique
elements. This implies that each element is included in exactly
one switch configuration. For any scheduling algorithm that
covers , a switch configuration will contain the
entry (element ). Two switch configurations are required to
cover all the entries, so at least one of the entries will
be in a configuration , where . Likewise,
one entry will be in , where and

3For clarity, this proof assumes that all parameters are such that the elements
of C are integers. However, the same result holds if the elements of the con-
structedC are all rounded down to the nearest integer.

Fig. 5. Portion of adversarial matrix which requires
(T logN) empty slots
to be scheduled in a minimum number of configurations.

. This argument continues forof the switch con-
figurations. Since the time required for a switch configuration
is the maximum of all elements in that configuration, switching

through requires at least

From the above algorithm, is the largest integer such that
, or

Substituting yields the total number of time slots required,

Therefore, an of at least is required.
This result shows that regardless of the algorithm used, sched-

uling so that there are only switch configurations requires
in general. A simple algorithm MIN (Algo-

rithm 2) shows this bound on the minimum speedup is also suf-
ficient.4 The algorithm’s running time is dominated bymax-
imum size matchings, for a total time complexity of .

Algorithm 2 Minimum switchings (MIN)

Step 1) Initialization . Create an N � N indi-
cator matrix B with all entries set to
one. Set d  2 and k  1.

Step 2) Identify large elements . Define the
N � N matrix A such that

ai;j =
1 if ci;j >

T

d
and bi;j = 1

0 otherwise
Step 3) Color . Construct the bipartite graph

GA from A (zero entries do not have a
corresponding edge). Perform a minimal
edge coloring of GA.

Step 4) Schedule . Set c  1.
Step 4a. Partition edges . Let the matching

Mc be the subset of edges in GA

assigned to color c. Take any
subset of edges Ea � Mc, such that
jEaj = djMcj=2e. Then Eb  Mc � Ea.

Step 4b. Schedule Ea. Construct the bipar-
tite graph GB = (EB; VB) from B. Re-
move edges from Ea which have been
previously scheduled by setting
Ea  Ea \ EB . Then, for each edge in
Ea, remove the corresponding edge,

4The algorithm and analysis presented assumeN � 8 for simplicity. Cases
whereN < 8 can be handled by slightly modifying Steps 4–5.
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that edge’s endpoints, and edges
incident to those endpoints from
GB . Find the maximum-size matching
MB on the remaining vertices and
edges of GB . Construct the config-
uration P (i) from the combination
of the two matchings Mc [ MB and
set the weight �(i)  b2T=dc. Set
B  B � P (i) and i  i + 1.

Step 4c. Schedule Eb. Repeat the procedure
of Step 4b, but for the edges of Eb

instead of Ea.
Step 4d. Loop over colors . Set c  c + 1. If

c � d � 1, then go to Step 4a. Other-
wise continue to Step 5.

Step 5. Loop . Set d 2d. If (i�1)+2(d�1) � N=4,
then go to Step 2. Otherwise continue to
Step 6.

Step 6. Finish . Construct the bipartite graph
GB from B. Perform a maximum-size
matching on GB and produce the switch
schedule P (i). Set �(i)  b2T=dc, B  

B � P (i), and i  i + 1. Repeat Step 6 until
there are no nonzero elements remaining
in B.

The MIN algorithm generates a logarithmic bound on the
total configuration weight and, therefore, the number of empty
slots, by first identifying the largest unscheduled elements of

at the beginning of the outer loop (Steps 2–5). Large ele-
ments are defined as being greater threshold value, which
is halved during each iteration of the outer loop. Steps 3–4 en-
sure that the elements greater than a particular threshold can al-
ways be scheduled in roughly configurations. Since previous
iterations guaranteed that all elements greater than were
scheduled, the total weight produced by each outer loop itera-
tion is roughly , which is constant in .

Only approximately one quarter of the elements ofare
scheduled in this outer loop, and since the number of con-
figurations produced by the outer loop doubles per iteration,
this gives a total weight of approximately . The
remaining configurations are created in Step 6 with
a weight of roughly each, giving a total weight of

, which does not affect the overall
logarithmic behavior of the algorithm.

To guarantee these bounds on the total configuration weight,
Steps 3–4 must schedule all the elements greater than the
threshold of in approximately configurations. Step 2
finds the large, unscheduled elements ofin the matrix .
Because the rows (columns) of sum to , there can be at
most elements greater than or equal to this threshold
in each row (column) of . This allows Step 3 to perform an
edge-coloring of the corresponding bipartite graph in at
most colors due to the classical result of König.

For each of the colors, Step 4 produces two configura-
tions, meeting the bound of total configuration per iteration
of the outer loop. Considering a single color of edges, Step 4 first
divides this group of edges in half (Step 4a). Then Step 4b builds

a perfect matching5 that includes the first half of these edges and
Step 4c performs the same task for the second half. Since each
configuration in a minimum switchings algorithm must cover

unique entries of , perfect matchings, which correspond to
full permutations, must found at these steps. Also, if the edges
are not split into two subsets, it is not always be possible to find
a perfect matching that contains all the edges. However, by re-
laxing this constraint so that each perfect matching needs to only
contain half the colored edges, such a matching provably exists
as long as there are more than entries left to be scheduled
in (see the Appendix). This condition on the number of un-
scheduled entries is ensured by Step 5 and explains the limit of

configurations produced in Steps 2–5.
Fig. 6 shows an example execution of the MIN algorithm for

a matrix with and . For simplicity, only a por-
tion of the matrices and the first several steps are illustrated. In
the first iteration of the example, and the first threshold
is . All entries 16 are considered for scheduling and
indicated in . For the first iteration, requires only
color in Step 3. Then, during Step 4a, the nonzero entries of
are partitioned into two subsets (circled) and (not cir-
cled). The elements of are a subset of a perfect matching
found in Step 4b, which is used as schedule with weight

. Similarly, the elements of are sched-
uled in Step 4c. After both steps, is shown with zero entries
corresponding to the scheduled elements of.

The outer loop is repeated for and all unscheduled
elements in greater than are indicated in . Again,

is colored using colors. Schedules and
correspond to the first color, while the remaining colors (shown
in gray) are used for schedules through . In Step 5,

is greater than , so the
algorithm goes to Step 6 and creates the remaining schedules.

The general operation of MIN is verified in the Appendix.
Theorem 3: To cover a general cumulative schedule matrix

with switch configurations is
sufficient.

Proof: Let be the number of iterations of the outer loop
of MIN (Steps 2–5). is the largest integer such that

Using , the total weight of the schedules produced from Steps
2–5 is then

The total weight produced during Step 6 is

By conservatively estimating as , a bound on
the total weight is then

5A perfect matching is a subset of edges such that each vertex is incident with
exactly one edge in that subset.



TOWLES AND DALLY: GUARANTEED SCHEDULING FOR SWITCHES WITH CONFIGURATION OVERHEAD 841

Fig. 6. Example execution of MIN (N = 32, T = 32). Only the first few
steps are shown.

Through further simplification, this expression can be bounded
by . Therefore, the minimum speedup is
sufficient.

Corollary 2: A speedup of

is sufficient to schedule in slot times.
Proof: This follows directly from the number of switch-

ings and the minimum speedup of
required for MIN.

So, while successfully reducing the number of configurations
to the minimum possible, the amount of speedup required to
support this few switchings grows with . This could be
an effective tradeoff for switches with inexpensive bandwidth
or a small number of ports. However, for larger switches, the
required speedup factor could be too expensive. In this case,
a more attractive alternative may be to use a near-minimum
number of configurations.

C. Near-Minimum Switchings

As described in the previous section, using the minimal
number of switchings requires a speedup of at least .
In this section, we show that by allowing switchings, the
minimum speedup can be reduced to approximately
two. Most importantly, the minimum speedup is no longer a
function of . This approach has the advantage of the EXACT
algorithm, a small constant speedup, combined with a number

of switchings that grows linearly with . The DOUBLE algo-
rithm (Algorithm 3) produces schedules with these properties
in time using the edge-coloring algorithm of
[15].

Algorithm 3 Near-minimum switchings (DOUBLE)

Step 1) Split C. Define an N �N matrix A such
that

ai;j =
ci;j
T

N

:

Step 2) Color A. Construct the bipartite
multigraph GA from A (the number of
edges between vertices is equal to the
value of the corresponding entry of A).
Find a minimal edge-coloring of A. Set
i  1.

Step 3) Schedule coarse . For a specific color
in the edge-coloring of GA, construct a
switch configuration P (i) from the edges
assigned that color. Set �(i)  dT=Ne and
i  i + 1. Repeat Step 3 for the each of
the colors in GA.

Step 4) Schedule fine . Find any N nonoverlap-
ping switch schedules P (N + 1); . . . ; P (2N)

and set �(N + 1); . . . ; �(2N) to dT=Ne.

DOUBLE works by separating into coarseand fine ma-
trices and devotes configurations to each. The algorithm first
generates the coarse matrixby dividing the elements of
by and taking the floor. The rows and columns ofsum
to at most , thus the corresponding bipartite multigraph can
be edge-colored in colors. Each subset of edges assigned
to a particular color forms a matching, which is weighted by

. The fine matrix for does not need to be explicitly
computed because its elements are guaranteed to be less than

. Thus, any configurations that collectively represent
every entry of , each weighted by , can be used to cover
the fine portion.

An example execution of DOUBLE is shown in Fig. 7. The al-
gorithm begins by creating the coarse matrixby dividing each
element in by and taking the floor. So, in the example,
entry (1,1) of contains . The
resulting matrix has row and column sums4, ensuring that
it can be edge colored with 4 colors (Step 2). Then, the edges
assigned to each color are converted to schedules in Step 3. For
example, corresponds to the subset of edges assigned to
color 1 during Step 2. Also, some of the schedules may not be
complete permutations because the row and column sums of
are less than , such as and , but it is still guaranteed
that all the elements of are covered. In general, Step 3 creates
at most matchings with weight , for a total weight of
approximately .

Step 4 picks four nonoverlapping schedules, through
, and each is assigned a weight of . In general,

Step 4 creates the same total weight as Step 3: approximately.
Therefore, the total weight to schedule using DOUBLE
is approximately and . The general operation of
DOUBLE is verified in the Appendix.
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Fig. 7. Example execution of DOUBLE (N = 4, T = 16).

The required speedup is now simply derived from the weights
assigned by DOUBLE.

Theorem 4: To transmit a general cumulative schedule ma-
trix in switch configurations is sufficient
when is a multiple of .

Proof: DOUBLE produces switch configurations,
each with a weight of . Summing these weights

Therefore, the minimum speedup is sufficient.
Corollary 3: A speedup of

is sufficient to schedule in slot times when is a mul-
tiple of .

Proof: This follows directly from the number of switch-
ings and the minimum speedup of required
for DOUBLE.

V. SCHEDULING WITH ARBITRARY RECONFIGURATIONS

In the previous section, we presented several algorithms that
achieve guaranteed performance with simultaneous reconfig-
urations. When the underlying technology allows switches to

be reconfigured while others continue to transmit, a more gen-
eral scheduling problem can be considered. In fact, scheduling
a switch with arbitrary reconfigurations can be formulated as
anopen shop schedulingproblem—a classic problem in oper-
ations research. We present this formulation and apply the list
scheduling algorithm of [9] to the problem. List scheduling is
shown to offer identical guarantees to the DOUBLE algorithm
at a slightly lower algorithmic complexity.

A. Open Shop Formulation

An open shop is a collection of jobsand machines . Each
individual job is a set of tasks , which
must be executed under several constraints: each taskmust
be executed on machine for a total of time
and each machine can only execute at most task at any given
time. Since the shop is “open,” the tasks of each job may be
executed in any order.

For a given open shop problem, we are concerned with min-
imizing themakespanor the time required to complete all the
jobs. In open shop literature, this problem is often abbreviated
as and is known to be NP-hard for more than three ma-
chines [16].

Using this notation, the constrained switch scheduling
problem can be expressed as an open shop problem. For a re-
quest matrix , the switch speedup, and switching overhead
, the individual tasks of a corresponding open shop are defined

as

The jobs correspond to inputs of the switch, , and the
machines correspond to the outputs, .

Then, any constrained switch scheduling problem can be
solved using algorithms developed for open shop scheduling.
When a particular task is scheduled on machine , the
switch is configured to connect inputto output . Since any
valid open shop schedule runs the task for time,
the corresponding constrained switch schedule has enough
time to configure the switch, which requirestime, and pass
the data from input to output , which requires time.

B. List Scheduling

List scheduling (LIST) is a greedy algorithm that can be used
to approximate the optimal open shop schedule within a factor
of two [9]. LIST starts by assigning a job to each machine. If
multiple jobs are contending for a single machine, one of the
jobs is chosen arbitrarily. Then the initial schedule of jobs to ma-
chines continues until a task is complete and the corresponding
machine is freed. Once a machine is idle, any job not currently
assigned to another machine that also has a task remaining for
the free machine is placed on that machine. Again, contention
is resolved arbitrarily. This continues until all the jobs are com-
plete. Creating a schedule with LIST requires time.

The best bounds on the maximum schedule length produced
by LIST is the sum of the time to process the longest job (sum
of its tasks’ durations) and the time to process the most heavily
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used machine (sum of all tasks for that machine) [11]. Using the
formulation for constrained switches described in the previous
section, the maximum schedule length produced by list
scheduling is

To guarantee the operation of the emulation architecture, the
speedup provided must ensure the schedule length is at most
slot times, therefore, is chosen such that .
Rewriting

Using this, we know the minimum speedup for list scheduling
is and the minimum delay is .

Although LIST allows less restricted assignment of switching
times compared to the simultaneous switching algorithms pre-
sented in Section IV, it offers no worst case advantage over the
DOUBLE algorithm. However, it does have a slight improve-
ment in running time.

VI. DISCUSSION

A. Analysis of Design Tradeoffs

The previous sections detailed four algorithms for uncon-
strained switch emulation. Given these algorithms, which is the
most appropriate for a particular system? The answer depends
on the relative costs of bandwidth, delay, storage, and the
switching overhead in the system.

If the system designer is insensitive to delay and storage
requirements, but considers bandwidth expensive, then the
EXACT algorithm is most likely an appropriate design choice.
However, exact scheduling can lead to large delays, even with
feasible system parameters. For example, consider a 128-port
switch with 10-Gb/s input lines and a 64-byte slot (slot time
of 50 ns). Fast MEMS mirror switches are used, which have a
switching time of or 10 s [4]. For exact matching,

is approximately 3.2 million slot times or 160 ms,
which makes the minimum fixed delay equal to 320 ms
plus the scheduling time. This delay is obviously unacceptable
for many switching applications.

The minimum switching algorithm MIN greatly reduces the
fixed delay over the exact algorithm, but at the cost of increased
speedup. In our example 128-port switch, MIN reduces the min-
imum fixed delay to 2.5 ms, but requires a minimum speedup of

.
DOUBLE provides a balance between the these two ex-

tremes. For the 128-port switch, a minimum fixed delay of
5 ms and minimum speedup of 2 are necessary. So, compared
to the exact algorithm, a speedup of 2 reduces the fixed delay
by a factor of 128. Alternatively, DOUBLE allows a switching
overhead that is 128 times greater than the exact algorithm for
the same fixed delay. Assuming there is a cost benefit in slower

TABLE I
SUMMARY OF ALGORITHM COSTS(ALSO SHOWN FORN = 128, � = 200)

switches, the potential savings from using slower switches may
more than offset the cost required to provide a speedup of 2.

LIST requires that switches to be reconfigured at arbi-
trary times, in contrast to the simultaneous reconfiguration
of EXACT, MIN, and DOUBLE. Despite this additional
flexibility, it does not offer any improvement in its worst
case guarantees. Moreover, list scheduling is the best known
practical algorithm for generating open shop schedules in poly-
nomial time [10], [11]. It remains an open question whether a
practical algorithm can improve the speedup or delay require-
ments by taking advantage of arbitrary switch configurations.

A summary of the costs for all scheduling algorithms is shown
in Table I, and the tradeoffs between the different algorithms are
represented graphically in Fig. 8. Fig. 8(a) shows a phase dia-
gram indicating which algorithm gives the minimum speedup
for particular values of and . The regions partitioned by the
lines represent the parameters for which the labeled algorithm
provides the smallest speedup. So, for small values of, the
MIN algorithm has the smallest speedup because it is the only
algorithm for which . Soon after is large enough
for DOUBLE or LIST to be used, they become the algorithms
of choice and likewise for the exact algorithm. For the example
of and , DOUBLE and LIST become pre-
ferred at approximately slot times and EXACT pro-
vides the lowest speedup at slot times [marked
as circles in Fig. 8(a)]. A similar graph is shown in Fig. 8(b) for
the minimum delay given and . As the speedup passes
2, DOUBLE and LIST become the favored algorithms, and at

, MIN is preferred. In the example, DOUBLE and
LIST provide the smallest delay at just beyond and MIN
at [marked in Fig. 8(b)].

Finally, while the delays in this example may seem large for
applications such as a packet switch, it is important to realize
that they are within a small constant factor of the minimum pos-
sible delays for the switch size and reconfiguration overhead.
To see this, consider the case when a cell arrives at each of the

input ports at the same time all destined to the same output.
For an unconstrained switch, it is obvious that these cells can
be transferred in slot times, giving a delay of slot times
to the last cell. Similarly, a constrained switch in the same sit-
uation requires slot times plus an additional slot
times to reconfigure the switch between cells, giving a delay of
approximately for the last cell. This simple example
illustrates how a particular cell must incur an additional delay
of slot times when traveling through the
constrained switch. Assuming , the delays incurred by
our architecture are for MIN and for DOUBLE and
LIST, only slightly above the minimum.
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(a)

(b)

Fig. 8. Algorithm phase diagrams over the design space. (a) Minimum
speedup. (b) Minimum delay.

B. AverageCase Performance of Algorithms

In the previous sections, only the worst case performance of
the different scheduling algorithms has been considered. While
the worst case is important for guaranteeing the correctness of
the emulation architecture, average case performance of the al-
gorithms may be of interest in systems that contain a mixture of
best effort data with data that requires guarantees through the
switch.

As described, the MIN and DOUBLE algorithms are not
designed to optimize average case performance. So, for this
section, modified versions of these algorithms, MINand
DOUBLE are used. In MIN, the inner loop (Step 4) is only
repeated for the actual number of colors required for.
Also, the weights in Steps 4b, 4c, and 6 are selected to be the
maximum value of the corresponding scheduled elements from

instead of being the largest possible value. Finally, the outer
loop (Steps 2–5) is repeated until exactly schedules have
been produced. DOUBLEcontains a similar change: in Step
4 the weights are selected to be the maximum value required to
cover the fine portion of the matrix.

For comparison, we also include GOPAL, the algorithm de-
scribed in [8]. GOPAL first guarantees the minimum number

of switchings and then tries to minimize schedule
length by greedily considering the largest unscheduled elements
of . The algorithm is designed for average case performance
and does not have a worst case guarantee.

Average case performance of the algorithms is determined by
running multiple trials on randomly generated request matrices.
Each request matrix is created by summing random
permutation matrices, which are uniformly selected from the set
of all permutations.

The average minimum speedup (one over the fraction
of empty slots) is shown versus the switch sizein Fig. 9(a)
for . Similar trends in both the average speedup and
average delay are observed for other values of. By definition,
EXACT fills all the slots and, therefore, only requires .

In contrast, MIN leaves many empty slots and requires a
speedup that steadily increases with. However, the average
case speedup for MINis significantly less than the worst case
bound derived in Section IV. The sawtooth shape of MIN’s
speedup is caused by jumps in the number of iterations of the
outer loop—each “tooth” in the graph corresponds roughly to
the value of for which one more iteration of Steps 2–5 can be
performed.

DOUBLE ’s average speedup stays near 1.5 or approxi-
mately 75% of its worst case bound of 2. The oscillations as
increases beyond 100 are due to the ceiling function used to
compute the weight in Step 3 of DOUBLE: up to schedules
with total weight at most are generated. The function

oscillates between 1 and 2 as increases, which
corresponds directly to the oscillations in the speedup required
for DOUBLE .

The speedup required for LIST has two distinct phases. Ini-
tially, the average speedup remains near optimal when the rela-
tive difference between entries intends to be small .
However, as increases, the relative difference also increases,
causing a jump in the speedup to approximately 1.5. For the case
shown in Fig. 9(a), the transition between the two phases of op-
eration occurs at approximately . As increases, this
transition point occurs at larger values of.

Finally, GOPAL generally gives the best average case
speedup excluding EXACT. It stays near optimal and grows
only slightly as increases.

Significantly less variation is found in the average minimum
delays of the algorithms, which are shown in Fig. 9(b) normal-
ized to . EXACT follows the curve necessary
to prevent empty slots. By definition, the minimum switchings
algorithms, MIN and GOPAL, have normalized delays of.
While DOUBLE can produce fewer than schedules in the
average case, the figure shows the average delay is only slightly
below . However, LIST has close to optimal delay in the av-
erage case, generally using only a few more thanswitchings.

In general, the two greedy scheduling algorithms, GOPAL
and LIST, showed the best average case performance for uni-
form random request matrices.

VII. RELATED WORK

The time-slot assignment problem has received significant at-
tention in the context of scheduling satellite-switched time-divi-
sion multiple access (SS/TDMA) systems. Notably, algorithms
to find exact decomposition of a matrixin a minimum number
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(a)

(b)

Fig. 9. Average case comparison of scheduling algorithms (T = 1024).
(a) Average minimum speedup. (b) Average minimum delay.

of switch configurations are described in [7]. The idea of using
only switch configurations was introduced in [8], where the
authors proved the problem of finding the minimum length
schedule for a particular matrix to be NP-complete. They also
introduced a heuristic algorithm to create the schedules. The
SS/TDMA scheduling problem is the same as the scheduling
problem considered in this paper. However, making an analogy
to packet routing, existing algorithms provide “best effort”
schedules, where the goal is to minimize the average schedule
length. We demonstrated new algorithms that solve the same
scheduling problem, but have provable worst case guarantees
necessary for emulation.

More recently, similar problems have been considered in
wavelength-division multiplexing (WDM) systems. Both [17]
and [18] provide heuristic algorithms for scheduling transmis-
sions in star networks given a number of tunable receivers and
transmitters with nonzero tuning latencies. Optimal all-to-all
transmission schedules for the star networks are considered in
[19]. The problems addressed by these researchers are more
broad in that multiple transmitters and receivers per input are
used, but again schedules are chosen to minimize the average
length, not to provide a bounded worst case.

The impact of constrained switches on packet switch sched-
uling has also been addressed. The work of [20] develops an
architecture and several algorithms to guarantee throughput and
delay given a larger data envelope and, therefore, fewer logical
switch configurations. This work complements our approach in
that we develop techniques to implement a given number of log-
ical switch configurations in fewer physical configurations, thus
reducing the speedup requirements of the switch.

Also, as noted in both [21] and [22], the task of computing a
schedule for anunconstrainedswitch is becoming a more dif-
ficult problem as switch sizes scale. Both of these papers pro-
vide solutions to this problem centered around decomposing a
traffic matrix into permutation matrices and show that the re-
sulting switch is stable. The algorithms presented in this paper
could readily be applied to this problem, extending the work of
[21] and [22] to switches with nonzero switching overhead. [22]
also notes that the exact scheduling algorithm’s requirement of

switch configurations limits scalability and proposes a
multi-stage network to solve the problem. In this case in partic-
ular, the DOUBLE or LIST algorithms could also provide scal-
ability for a speedup of 2.

As described in Section V, constrained switch scheduling can
be cast as an open shop scheduling problem. It is a long-standing
open question in operations research whether the factor of two is
a necessary condition for list scheduling and also whether prac-
tical algorithms exist that outperform list scheduling. A polyno-
mial time approximation scheme (PTAS)6 for open shop sched-
uling is given in [23], but the authors admit the constant terms
in the run-time of the algorithm make it impractical.

VIII. C ONCLUSION

Optical switching technologies are becoming an attractive al-
ternative to electronic switches as the demand for switch band-
width and port count increase exponentially. However, many of
these optical technologies have a large switching overhead, re-
quiring from nanoseconds to milliseconds to reconfigure. Ef-
ficient scheduling of these constrained switches requires algo-
rithms that consider this overhead.

We proposed an architecture and algorithms that allow a
constrained switch to exactly emulate an unconstrained switch
within a fixed delay. This decouples the task of accounting for
configuration overhead from the traditional switch scheduling
problem. Constrained switches can then be used directly in
designs that can tolerate the fixed delay.

Providing emulation requires scheduling algorithms that have
guaranteed bounds on the length of their schedules. We ana-
lyzed the speedup and delay required for emulation using three
bounded algorithms across a range of port sizesand batch
sizes . The EXACT algorithm provides the lowest speedup re-
quirement, but is only attractive for very large batch sizes, which
are needed to amortize the cost of its quadratic number of con-
figurations, or very low port counts. We developed the MIN al-
gorithm to use the minimum number of switchings , but
the speedup required was shown to be prohibitive, . As
a result, MIN is only attractive for small batch sizes, where it is
the only algorithm that will work. Alternatively, our DOUBLE

6A PTAS approximates the optimal solution of a problem to within a factor
of (1 + �) for any� > 0.
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algorithm balances a small number of switchings
with a constant speedup of 2. DOUBLE offers the minimum re-
quired speedup across a wide range ofand . The resulting
family of algorithms provide a range of speedup versus delay
tradeoffs, making emulation feasible over a large design space.

By allowing arbitrary reconfiguration of the switching ele-
ments, the constrained switching problem was then formulated
as an open shop scheduling problem. A simple approximation
algorithm LIST was shown to give the same speedup and delay
requirements of DOUBLE. Interestingly, LIST gives the best
known bounds for a practical open shop scheduling algorithm,
so for our architecture there is no gain in adopting switching
technologies that allow arbitrary reconfiguration.

The work presented here raises many interesting questions
for future study. The algorithms we have presented represent
several points in the space of versus . It is interesting to
ask what happens at other points. As we increasefrom
to how rapidly does fall from 2 to 1? Can a constant

be achieved for an less than ? Finally, while LIST is
currently the best known practical approximation algorithm for
open shop scheduling, it is still an open question whether a more
efficient algorithm exists. For constrained switch scheduling, it
may be possible to take advantage of the specifics of the problem
to develop a tighter bound on the open shop schedule length.

APPENDIX

Two classical results from graph theory are used in the fol-
lowing sections.

Theorem 5: (Hall) For a bipartite graph , a
perfect matching exists if and only if for all nonempty ,

where is the set of vertices adjacent to.
Theorem 6: (König) There exists an edge-coloring of any

bipartite multigraph with a maximum degree ofwhich uses
colors.

A. Correctness of MIN

For simplicity, the MIN algorithm is presented for and
for this proof of correctness we also assumeis even.

Theorem 7: For a bipartite graph with
, there always exists a perfect matching in

if its minimum degree is greater than .
Proof: Assume no perfect matching exists in the graph.

Then by Hall’s Theorem, there must exist a nonempty
such that . Since the minimum degree of is
greater than , then . Also,

.
By definition of there are no edges between

and . Therefore, for any vertex ,
. This implies , which is a

contradiction because the degree ofis greater than . There-
fore, contains a perfect matching.

Theorem 8: For a -regular bipartite graph
with and , any partial matching of

with is a subset of a perfect matching of.
Proof: Construct a copy of in . For each edge in ,

remove the edge, its endpoints, and edges incident to those end-
points from . This leaves vertices in . Also, each
removal reduces the degree of the remaining vertices ofby

at most one. Therefore, the minimum degree of the remaining
vertices of is at least .

By Theorem 7, there is a perfect matching inif
, or rewriting, that . From the Theorem

statement, , so there is
a perfect matching in . If a vertex in was not covered
in the partial matching , it was included in and must be
covered in the perfect matching . Therefore, is a
perfect matching of and is a subset of this matching.

Now the correctness of MIN can be examined step-by-step.
Step 1 simply initializes the algorithm. Step 2 identifies all
edges greater than that have yet to be scheduled. The
row (column) sums of are less than . Otherwise, the
corresponding row (column) of would be greater than

, which is a contradiction because the row
(column) sums of are at most . The graph constructed
in Step 3 has a maximum degree of at most because the
row (column) sums of are less than . Then, by König’s
Theorem, can always be edge colored with colors.

Now that all the edges have been identified in Step 2 and col-
ored in Step 3, Step 4 loops over colors, which is suffi-
cient to visit each of the colors assigned to . In Step 4a, half
of the edges of a particular color are used as a partial matching
in . Since is assumed to be even, is at most .
By Theorem 8, Step 4a finds a perfect matching of that in-
cludes if is -regular with . Regularity is
enforced by the fact that only perfect matchings are removed
from throughout the algorithm. The condition onis ver-
ified below. Also, it is possible that some of the edges in
were scheduled, and hence removed, since the coloring in Step
3. This is handled by simply removing these edges from,
which can only reduce , ensuring the conditions of The-
orem 8 still hold. Again, since is even, there are at most
edges remaining in for Step 4b, so another perfect matching
can be found. Therefore, Steps 4a and 4b together ensure that all
the edges in assigned to a particular color will be scheduled.
Since this process is repeated over all the colors, all the edges
in will be scheduled during Step 4.

Once Step 5 is reached, all the entries greater thathave
been scheduled during Step 4. So, during the next iteration, no
entry will be greater than ( has been updated in Step
5), which ensures the weight assigned to the schedules during
Steps 4a, 4b, and 6 are sufficient to cover the corresponding
elements of . Also, since additional schedules are
produced in each loop, the loop condition during Step 5 ensures
the above constraint onis met. Finally, the Step 6 extracts the
remaining perfect matchings from, which are guaranteed to
exist because is regular.

B. Correctness of DOUBLE

The row (column) sums of , created in Step 1, are at most

So, by König’s Theorem, the edge-coloring produced during
Step 2 uses at most colors. Step 3 then produces at most
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schedules, using all the edges inexactly once. Finally, Step
4 covers every entry uniformly using more schedules, for a
total of at most schedules. Any entry is covered
times in Step 3 and once more in Step 4:

So, the schedules produced by DOUBLE cover every element
of .
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