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Guaranteed Scheduling for Switches
With Configuration Overhead

Brian Towles Student Member, IEEEBNd William J. Dally Fellow, IEEE

Abstract—in this paper, we present three algorithms that NN Number of switchings per batch.
provide performance guarantees for scheduling switches, such as ¢ Switch configuration interval (weight).
optical switches, with configuration overhead. Each algorithm em- Internal speedup of switch.
ulates an unconstrained (zero overhead) switch by accumulating . . . . .
a batch of configuration requests and generating a corresponding P Switch (_:onflgurathn/permutatlon matrix.
schedule for a constrained switch. Speedup is required both to 7’ Batch size in slot times.
cover the configuration overhead of the switch and to compensate
for empty slots left by the scheduling algorithm. Scheduling
algorithms are characterized by the number of configurations |
N, they require to cover a batch of requests and the speedup
required to compensate for empty slotsS,in . Initially, all switch . :
reconfiguration is assumed to occur simultaneously. We show that O PTICAL switches bas_ed on MEMS. mlrrors, tunabl_e
a well-known exact matching algorithm, EXACT, leaves no empty elements, bubble switches, and similar technologies
slots (i.e.,Smin = 1), but requires N, ~ N2 configurations for [1]-[5] have been developed to meet the exponentially in-
an N -port switch leading to high configuration overhead or large creasing demand for switch bandwidth and port count. These
batches and, hence, high delay. We present two new algorithms gptical switching technologies offer high bandwidth in an
that reduce the number of configurations required substantially. aconomical manner. Switches built with these technologies,

MIN covers a batch of requests in the minimum possible number however, require significant time to reconfigure due to me-
grofg ngil:afnz,li\;sz N Jg@ggé tsrt]reikee)s(pae%zefa?:;z ar?éj?npgy chanical settling, synchronization, and other factors. These
twice as many configurations, N, = 2N, while reducing the configuration overheads range from milliseconds for bubble
number of empty slots so thatS,,i» = 2. Loosening the restric- and free-space MEMs switches [2], [3], to 18 for MEMs

tion on reconfiguration times, the scheduling problem is cast as waveguide switches [4], and as little as 10 ns for electroholo-
an open shop. The best known practical scheduling algorithm granhic techniques [5]. With typical cell sizes on the order of

for open shops, list scheduling (LIST), gives the same emulation .
requirements as DOUBLE. Therefore, we conclude that our 50 ns (64 bytes at 10 Gb/s), these switches take from 0.2 to

architecture gains no advantages from allowing arbitrary switch 20000 cell times to reconfigure. Efficiently scheduling such
reconfiguration. Finally, we show that DOUBLE and LIST offer ~ optical switches requires algorithms that take this configuration
the lowest required speedup to emulate an unconstrained switch overhead into account and optimize the resulting schedule.
across a wide range of port count and delay. Algorithms and architectures for unconstrained (zero over-
Index Terms—Optical switches, packet switching. head) switches often rely on the fact that switchesstateless
any configuration can be presented esldh timewith no differ-
ence in switch behavior. The configuration overhead of optical

. INTRODUCTION

NOMENCLATURE switches introduces state: a switching overhead is experienced if
i Element(i, j) of matrix A. the current switch configuration differs from the previous slot’s
c Cumulative request matrix, the sum of the switclgonfiguration.

configurations requested over a period of time; the This paper develops an architecture and algorithms for
rows and columns sum to the number of configuraiSing a constrained switch to exactly emulate the behavior

tions requested. of a unconstrained switch with a fixed delay. As long as the
C(T) C where rows and columns sumo system employing the switch can tolerate the fixed delay, the
S Switching overhead in slot times. emulation architecture can directly replace an unconstrained
H Batch scheduling time in slot times (rounded up t8Witch. In essence, emulation decouples the constraints of

the nearestintegral number of batch tirfie® allow nonzero switching overhead from the classic switch scheduling
pipelining). prqblem. This allows desjgners to use optical signaling gnd

N Number of switch ports. switching directly with existing architectures and scheduling
algorithms. Unlike previous algorithms that perform best effort

, _ _ scheduling of constrained switches [6]-[8], the algorithms we
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is a tradeoff as aggressive reduction in the number of configu- ' !
rations can lead to a large number of empty slots and, hence, switch _§.>[|ID_- scheduler

: configuration
require a large speedup. i

We first examine switching technologies that do not allow ?’DID
reconfiguration of some switching elements while others con- N —g—»[]]]]
tinue to transmit. Under this consideration, we explore three inputs i

algorithms that span the design space of the number of con- I s e
figurations versus the number of empty slots. At one end of —§>|]]]] ooe —
the design space, a well-known exact decomposition algorithm,
EXACT [7], generates a schedule with no empty slots but re-
quiresN, ~ N? configurations (whereV is the number of
ports) and, therefore, a very high delay. At the other extreme,
we introduce a new algorithm, MIN, that generates a minimum \ )
number of configuration®/;, = IV, but leaves most slots empty

and requires a switch speedup@®flog N). We balance delay
and speedup with another new algorithm, DOUBLE, that r%l‘g. 1. Emulation architecture. The dashed boundary operates as an
quires twice the minimum number of configuratiaN$ = 2N,  unconstrained switch plus a fixed delay, while the internal crossbar is

but leaves at most half of the slots empty, thus, requiring a switstplemented with a constrained switch. Both input and output buffers as well
Speedup of 2 as a central scheduler are required for emulation.

The restriction on switching times is then removed and we
show that the resulting system can be considered as an open shop
scheduling problem. List scheduling (LIST) [9] is then applied This paper deals with scheduling of a crossbar switch that can
to the problem, ultimately yielding the same balance in switdiealize any one-to-one (unicast) mapping of inputs to outputs.
configurations as DOUBLE. Given that LIST is a practical algoSuch a mapping is described bgwitch configuratior”, where
rithm with the best known bound for open shop scheduling [10F, is & permutation matrix; when an element; is one, input
[11], it follows that our architecture does not gain an advantaéfeconnected to outpytfor that configuration. Multicast traffic
from a switching technology that allows some switching eldés not considered. Time is slotted and a new configuration may
ments to be reconfigured while others continue to transmit. be provided to the crossbar eaglbt time

We then compare the speedup and delay overheads of all thgnhke typical ellecFromc switches, Fhe model glsq associates a
algorithms across the space of switch seand delayZ’. Our fixed, nonzerc_swﬂchmg overhee_lﬂ W|t_h eachswn_chlng e\_/ent_
results show that DOUBLE and LIST offer the lowest overhead@ny change in the switch configuration). The fixed switching
of the algorithms across a wide portion of this space. EXAquer_heac_i is intended to capture all effects, such as mechanl_cal
offers better performance only for low port count or high delay€ttling times and synchronization overhead, that temporarily
and MIN offers better performance only for very low delayd’reventtransmission as a switching element is reconﬂg_ured. An
Viewed another way, for a fixed overhead, DOUBLE and LiS¥nconstrainedswitch has) = 0, whereas @onstrainedswitch
require much lower delay for emulation than EXACT at the eX1@86 > 0. We expres$ in units of slot times.
pense of a speedup of two. For example, fa¥a= 128 port
MEMS switch with a configuration time of 10s, EXACT re- 1. ARCHITECTURE
quires a minimum delay of 320 ms while DOUBLE and LIST we emulate an unconstrained switch using a constrained
can operate with a delay of 5 ms. We also simulate the averaggssbar with input and output queues (Fig. 1) where the
case performance of the algorithms, which is an important dgsnstrained crossbar hapeedupS to compensate for its
sign consideration in systems that include a mix of both begkitching overheads. The dashed boundary represents the
effort and guaranteed data for the switch. The simulations shewndard unconstrained interfad€:inputs, N outputs, and a
the average number of empty slots is only a fraction of thegonfiguration input. The speedup refers to the ratio of the
worst case bounds, while the average number of switch configiternal line rate to the input line rate. The input and output
urations required is generally close to the worst case bound.queues enable this rate mismatch by physically decoupling the

The remainder of this paper explores the design of algorithitgernal and external lines.
that provide service guarantees for switches with configuration
overhead in more detail. Section Il introduces a simple switéh Emulation Approach

model used throughout the paper. The emulation architecture iSne scheduler in Fig. 1 performs pipelined batch scheduling

detailed in Section Ill. Section IV introduces three algorithmiﬁ four phases. In the first phase, a batch is created by accumu-

under the copstraint of simultaneous reconfiguration. a’l‘&’tingthe requested configuratioffét) over an interval’ such
discusses their performance guarantees. The constraintsypg

switching times are removed in Section V and the scheduling
problem is cast as an open shop. Section VI compares all of
the algorithms in terms of overhead and delay as a function of o) = Z P(t).

switch ports. Related work is discussed in Section VII. Finally, t=n

conclusions are drawn in Section VIII. Correctness proofs fhater phases may reorder the data, so incoming data is tagged
the new algorithms are included in the Appendix. with its arrival time, allowing the original order to be restored.
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Fig. 2. Batch timeline fotH = 2T showing two batches; andb, as they
traverse the emulation phases. Note that laaihdb can exist in the scheduling
phase (phase 2) simultaneously because there are no dependencies betwe
batches and scheduling resources can simply be duplicated. A single packet i
also shown in gray with an arc connecting its entrance and exit times from the
emulation architecture.

Delay, T

. ig. 3. Speedup required for emulatiaN{ = 128, 6 = 1). BothT,,.:, and
The second phase computes a switch schedule for the bagél . peecup Teq! ulation { )

in are assumed to be constants for this example.
While the time to compute a batch’s schedifleis assumed
to be a multiple of the batch tim#, it is not necessary that
H = T. The pipeline diagram shown in Fig. 2 illustrates th
case wherH{ = 27'. Since each batch processed by the swit

is independent, multiple batches may be scheduled in paraller 10,1, to send!” slots of data. If the scheduling algorithm

given thatH /T sets of switch scheduling hardware exist. X . :
Once the schedule for a batch is computed, it is executed %Qactly filled each of the slots with data, the speedup required
would beScxact = T/(T — Tiin)-2

the constrained switch during the third phase. The critical guar- : )
; - Not all algorithms completely fill the slots, however. So the
antee necessary for the architecture to emulate an unconstrain ; i
o . ofal number of slots used by a scheduling algoritfincan be
switch is that the third phaseevertakes longer than the batch : k
' . reater tharf” in general. Thus, the speedup required to com-
time T". This guarantee also ensures that no data element stays

in the input queues for more thafl" + H slot times. After tra- pivgssa:r?esg:)etlt)c/)r:?ratshﬁetstrg%fytrsjg\t/zs}sﬁansj’: cuTrS\{ g’\yivervvceh d
versal, data is reordered as it is stored in the output buffers. 9 ymp '

. . another way, the fraction of slots filled by the scheduling algo-
Finally, the fourth phase simply sends the data from the OUtpL{ mis l/SZﬁn. So, for example, if half th>(/a slots are fiIIedgwit%

buffers onto the output lines in the same order it entered tﬁeta an additional speedup 8f.. = 2 is required beyond
switch. As shown by the arc between an arriving data elemeiﬂa{ ' P P Bhin = q Y

and its departure from the switch (Fig. 2), this relationship irrh-ee‘;jpee‘juls""“‘ct necessary to compensate for switching over-
plies a delay bound ofT" + H whenH slot times are reserved '
for the second phase scheduling. Therefore, the outputs exactl
emulate the behavior of a corresponding unconstrained Swift
plus the fixed delay 02T + H. _ Swin? ST T>T..
As expected, the amount of storage required in the architec- T—Twin T—6N,’ e

ture grows linearly witl". Let L indicate the number of bits sentThis relationship can be also rewritten to give the batch size
to a single input port during a slot time. Considering one poriequired for a particular speedp
a batch is held foR7" + H slot times in the input buffers and ST, 5N.S
since a new batch is started edElslot times, enough buffers T= S99 _g§. .
for (27'+ H) L bits of data are required in the input stage. Simi- i n
larly, data is held foRT slot times in the output stage, requiring
2T L bits of buffering. So, considering all ports, the architecturd V- SCHEDULING WITH SIMULTANEOUS RECONFIGURATIONS

the emulation algorithm. The time spent on configuration over-
ead during each batch &f, configurations isl\,;, = 6N,
& left asymptote of th& versusT curve. This leaves time

Multiplying these two speedups gives the total speedup re-
red for a particular batch sizé

S > Shin-

needs(4T" + H)LN bits of total buffering. The scheduling task is a time-slot assignment problem. Given
an input—output request matiX, assign a switch traversal time
B. Emulation Requirements for each element i@’ so that the total transmission time is min-

To compensate for the overhead of switch configuration af@#ized. Emulation also requireguaranteesabout the perfor-
slots left empty by the scheduling algorithm, the emulation af?@nce of scheduling algorithms. That is, for any ma€fiand
chitecture must operate with a speediihat depends on the switching overhead, the worst case transmission time required
batch sizel” as illustrated in Fig. 39 is selected to ensure thatfor @ scheduling algorithm must be bounded.

C(T) can be completely transmitted during the third phase of We first approach this problem by finding decompositions
of the request matrixC into N, permutation matrices, such
that N < T. Specifically, a set of switch configurations

1if a particular design only requires that packets between each input—output

pair remain in order, no ordering tags are required and no reordering is require@While bothT,..;,, and$...;. are constants in all the algorithms presented in

at the end of the third phase. this paper, it also possible for their values to vary wath7", and/oré.
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P(1),..., P(N,) and corresponding weigh{g1), . . ., ¢(Ny)

thatcoversC is found during phase 2 of the pipeline:

[N
I
N

o e
~

e e s s e
—
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-

N
Z(b(k)pz,](k) Zci,j7 VL,_] € {1,...,N}.
k=1

In the case of equality for allandy, the switch configurations
exactly cover”. Then, during phase 3, the constrained switch is
configured in the sequend&(1), ..., P(N;) with each config-
uration held fokp(1), . . ., ¢(Ns) slot times. All of the switching >
elements in the constrained switch are reconfigured simultane- @)
ously. ) .
The requirement of simultaneous reconfiguration arises due 511| |5 ;
to technological constraints of specific systems. For example, C=|124|= 4] 5 1 ' 2
|
i

issues such as optical crosstalk in a free-space optical switch or
coupling between mechanical switching elements may prevent
switches from being reconfigured while others continue to Input 1 1o 1 2 3
transmit. Also, related problems, such as scheduling SS/TDMA 2 03 1 )
systems (Section VII), require simultaneous reconfiguration. 3
This constraint is loosened in Section V.

This section presents several algorithms for achieving guar- time "
anteed performance with simultaneous reconfigurations and ex- (b)
a_mmes the tradeoff between, the number of switch Conﬂgu@lé. 4. Tradeoff between fewer switch configurations and empty slots
tions used to cover the matrix and the number of empty S|QI§: 1). (@) Decomposition into four configurations with no unused slots. (b)
left by the algorithm. An example of this tradeoff is illustrated ifPecomposition into three configurations resulting in the introduction of empty
Fig. 4. First, a request matri is decomposed into four switch SIts into the schedule.
configurations that exactly cover [Fig. 4(a)]. The accompa-
nying time-slot assignment diagram shows the connection of fiiom request matrix and this procedure is repeated until all en-
puts (shown vertically) to particular outputs, denoted by slot I&ies ofC have been zeroed (Step 4). This algorithm always ter-
bels. The shaded segments show the switching time required®énates inN? — 2N + 2 iterations, meeting the lower bound.
tween different configurations. An alternative decomposition &ince each step requires a maximum-size matching of com-
C gives only three switchings, but the corresponding time-siptexity O(N?%), the overall run time of EXACT i€)(N*5).
assignment contains empty slot times [Fig. 4(b)]. Since each
configuration is held for the maximum time of all the elementaigorithm 1 Exact Covering (EXACT)
contained within it, some slots are left unused. From this simplgay 1)  njtialization . Set i—1and A— C(T).
example, it should be clear that fewer switchings require 1e8g, 2) Bjpartite match . Construct a bipartite
overhead time, but at the potential cost of leaving slots empty graph from A where each nonzero entry of
during switch traversal. This tradeoff is quantified in the fol-

f —
IS
n
'S
N

A has a corresponding edge in the graph.

lowing sections. Find a maximum-size matching M of this
i graph.
A. Exact Covering Step 3) Schedule . Construct a permutation P(i)
A well-known decomposition of any matric(T) [7], [12] which corresponds to the matching M.
exactly covers the matrix in at moadt, = N? — 2N + 2 switch Set the weight based on the minimum
configurations. entry value of A corresponding to the
Theorem 1: N, = N% — 2N + 2 switch configurations and edges of M : @(i) — mine pyem de,s.
positive integer weight(1), ..., ¢(NNs) are necessary and suf-Step 4) Update and loop . Set A «— A — ¢(i)P(i) and
ficient to exactly cover anyV x N matrix C(T). i «— i+ 1. If any nonzero entries of A re-
Proof: As noted in [13, p. 36], necessity is proved in [14] main, go to Step 2. Otherwise end.

and sufficiency in [12]. |
Several algorithms are suggesteql in [7] tolrealize the IowerGiVen the bound on the number of switch configurations,
bound on the number of configurations required. These alg@y, yota] amount of switching overhead can be determined and,

rithms incl_ude optimizations _to imprqve the average number erefore, the required speedup can be calculated.
configurations, but we consider a simple algorithm that only Corollary 1: A speedup of

meets the bound oV, = N2 — 2N + 2 configurations (Al-

gorithm 1). The EXACT algorithm repeatedly performs max- r

imum-size matchings on the nonzero element§'dfStep 2). T —6(N>=2N +2)

The weight of the corresponding configuration is taken as tligesufficient to schedul€'(T') in T slot times.

minimum value of all the elements ¢f included in the match Proof: This follows directly from the number of switch-

(Step 3). This ensures that at least one element of the requestimgs N, = N2 —2N 42 and the minimum speedup 8f.;, = 1
trix is zeroed per iteration. Then the configuration is subtractedquired for an exact covering. O
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Note that the minimum fixed delay experienced by the switch, [T ) ,
Tmin = 6(N? — 2N + 1), must grow at least with the square T'/2 T'/2
i -t T'/2 T'/2

of the number of ports on the switch. This implies the amount T ’ ’

; A= /3 T'/3 T'[3
of storage must also grow with(/N?). In a system where the T'/3 T'/3 T'/3
bandwidth between input—output pairs is expensive relative to T'/3 T'/3 T'/3
the cost of providing the storage and tolerating the fixed delay,

exact covering is an attractive approach. SiNée-2N +1 con-
figurations are necessary to exactly cog&rfurther reducing Fig.5. Portion of adversarial matrix which requit@éT log N') empty slots
the number of switchings would introduce empty slots leadirigjbe scheduled in a minimum number of configurations.

to a waste of the expensive bandwidth. Alternatively, in systems

with inexpensive bandwidth a designer may be willing to tradB(3) # P(1). This argument continues fdrof the switch con-
that bandwidth for a smaller fixed delay and less storage requifigurations. Since the time required for a switch configuration

ments. is the maximum of all elements in that configuration, switching
P(1) throughP(I) requires at least
B. Minimum Switchings ) T T ,
While O(N?) configurations are necessary to exactly cover (T"+1)+ <7 + 1) et <7 + 1) > Tl

C, itis possible to cover any with as few asV configurations. From the above algorithmi is the largest integer such that
This is clearly the minimum number of configurations@fas Z{_li < N, or

N2 nonzero entries in general and each configuration covers

at mostN of these entries. However, the use of fewer config- = (VI+8N —1) > V2N — 3
urations introduces empty slots which must be overcome with 2

speedup. In this section, we show that cost of these empty slgisstituting yields the total number of time slots required,
can be quite significant: faN; = N, Sy, is ©(log N).

Theorem 2: To transmit a general cumulative schedule ma- (T—N)ln(J) > (T—N)In (x/ﬁ — §> .
trix C(T') in N switch configurationsSy,;, must be at least S ) 2
Q(log N) for T > N. Ther_efore, arb,,;, of at least2(log N) is reqwre.d. O

Proof: An adversarial matrixC is constructed by the fol- ~ This result shows that regardless of the algorithm used, sched-
lowing algorithm3 uling C so that there are onli¥ switch configurations requires
Smin = Q(log N) in general. A simple algorithm MIN (Algo-
S o . rithm 2) shows this bound on the minimum speedup is also suf-
Step 1) Initialization - Create two N x A ficient4 The algorithm’s running time is dominated By max-
matrices, A and B. Initialize al imum size matchings, for a total time complexity@f N 3-3).
entries of A to zero and all en-
;,n?_s 10f B to one. Set i — 1 and Algorithm 2 Minimum switchings (MIN)
Step 2) Buil.d A. Fill the submatrix Step 1) Initialization . Create an N x N indi-
T cator matrix B with all entries set to
A i+ j—lii+j—1)="— one. Set d—2 and k — 1.
J Step 2) Identify large elements . Define the
where T' = T — N. Set i < i+ j and N x N matrix A such that
j o~ J+ 1.If i4+j > N go to Step 3, 1 i ey, > g and b ;=1
otherwise repeat Step 2. aij = {0 otherwise
Step 3) Create C. Set (' —A+DB and I .. Step 3) Color . Construct the bipartite graph
G, from A (zero entries do not have a

From the construction aft (Fig. 5), it is clear that each row corresponding edge). Perform a minimal
and column sums t@”. The rows and columns d§ each sum edge coloring of Ga.
to N and, therefore, each row and column suncais 7. Step 4) Schedule . Set ¢« 1.

The addition of thé3 matrix to A guarantees that there are no Step 4a.  Partition edges . Let the matching
nonzero elements i@i. Since allN2? elements are covered M M. be the subset of edges in Ga
switch configurations, each configuration must coeunique assigned to color c. Take any
elements. This implies that each element is included in exactly subset of edges  E. C M., such that
one switch configuration. For any scheduling algorithm that |Ea| = [|Mc]/2]. Then Ej « M. — E..
coversC, a switch configuratiod?(1) will contain the7” +1 ~ Step 4b.  Schedule E.. Construct the bipar-
entry (element; ;). Two switch configurations are required to tite graph Gz = (Eg.Vp) from B. Re-
cover all theT” /2 + 1 entries, so at least one of the entries will move edges from FE, which have been
be in a configuration?(2), where P(2) # P(1). Likewise, previously scheduled by setting
oneT’/3 + 1 entry will be in P(3), whereP(3) # P(2) and Eq, — E, 0 Ep. Then, for each edge in

E,., remove the corresponding edge,
3For clarity, this proof assumes that all parameters are such that the elements
of C are integers. However, the same result holds if the elements of the con4The algorithm and analysis presented assiNng 8 for simplicity. Cases
structedC' are all rounded down to the nearest integer. whereN < 8 can be handled by slightly modifying Steps 4-5.
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that edge’s endpoints, and edges
incident to those endpoints from

Gg. Find the maximum-size matching
Mg on the remaining vertices and
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a perfect matchirfgthat includes the first half of these edges and
Step 4c performs the same task for the second half. Since each
configuration in a minimum switchings algorithm must cover
N unique entries of’, perfect matchings, which correspond to

edges of (Gg. Construct the config- full permutations, must found at these steps. Also, if the edges
uration  P(i) from the combination are not split into two subsets, it is not always be possible to find
of the two matchings M. U Mg and a perfect matching that contains all the edges. However, by re-

set the weight o(i)
B~ B-P(i) and i —i+1.

|27/d]. Set

laxing this constraint so that each perfect matching needs to only
contain half the colored edges, such a matching provably exists

Step 4c.  Schedule FE,. Repeat the procedure as long as there are more thal /4 entries left to be scheduled
of Step 4b, but for the edges of E, in C (see the Appendix). This condition on the number of un-
instead of  F.,. scheduled entries is ensured by Step 5 and explains the limit of
Step 4d. Loop over colors . Set ¢ «— ¢+ 1. If N/4 configurations produced in Steps 2-5.
¢ < d-—1, then go to Step 4a. Other- Fig. 6 shows an example execution of the MIN algorithm for
wise continue to Step 5. a matrix with N = 32 and7T" = 32. For simplicity, only a por-
Step 5. Loop. Set d«—2d. If (i—1)4+2(d—1)< N/4, tion of the matrices and the first several steps are illustrated. In

then go to Step 2. Otherwise continue to
Step 6.

Finish . Construct the bipartite graph
G from B. Perform a maximum-size
matching on Gpg and produce the switch
schedule P(i). Set (i) « [27/d], B <+
B — P(i), and i+ i+ 1. Repeat Step 6 until
there are no nonzero elements remaining
in B.

the first iteration of the examplé, = 2 and the first threshold
isT/d = 16. All entries>16 are considered for scheduling and
indicated inA. For the first iterationA requiresonlyl — 1 = 1
color in Step 3. Then, during Step 4a, the nonzero entrie$ of
are partitioned into two subsets, (circled) and;, (not cir-
cled). The elements of, are a subset of a perfect matching
found in Step 4b, which is used as schedBld ) with weight
¢(1) = 2T/d = 32. Similarly, the elements oF;, are sched-
uled in Step 4c. After both step8, is shown with zero entries
corresponding to the scheduled element§’of

The outer loop is repeated far = 4 and all unscheduled

The MIN algorithm generates a logarithmic bound on th@lements irC’ greater thai’/d = 8 are indicated ind. Again,
total configuration weight and, therefore, the number of empty is colored usingl — 1 = 3 colors. Schedule®(3) and P(4)
slots, by first identifying the largest unscheduled elements &@rrespond to the first color, while the remaining colors (shown
C at the beginning of the outer loop (Steps 2-5). Large el gray) are used for schedulé¥5) throughP(8). In Step 5,
ments are defined as being greater threshold vajug which  (i—1)+2(d—1) = 8+14 = 22is greater thaw/4 = 8, so the
is halved during each iteration of the outer loop. Steps 3—4 edgorithm goes to Step 6 and creates the remaining schedules.
sure that the elements greater than a particular threshold can althe general operation of MIN is verified in the Appendix.
ways be scheduled in roughtyl configurations. Since previous Theorem 3:To cover a general cumulative schedule matrix
iterations guaranteed that all elements greater #¥ah were C(1) with N switch configuration®m;n = 47°(4 + log, N) is
scheduled, the total weight produced by each outer loop itefafficient. _ _
tion is roughly(27'/d)(2d) = 4T, which is constant ifV. Proof: Letm be the number of iterations of the outer loop

Only approximately one quarter of the elementscofare ©f MIN (Steps 2-5):m is the largest integer such that
scheduled in this outer loop, and since the number of con-
figurations produced by the outer loop doubles per iteration,
this gives a total weight of approximateWT log, N. The
remaining 3N/4 configurations are created in Step 6 withysingmm, the total weight of the schedules produced from Steps
a weight of roughlyl67/N each, giving a total weight of 2_5 is then
(3N/4)(16T/N) = 12T, which does not affect the overall
logarithmic behavior of the algorithm.

To guarantee these bounds on the total configuration weight,

Steps 3-4 must schedule all the elements greater than the
threshold ofT'/d in approximately2d configurations. Step 2 The total weight produced during Step 6 is
finds the large, unscheduled elements(diin the matrix A.
Because the rows (columns) 6f sum toT, there can be at i{lJ < ZT(N:_%T+4)
mostd — 1 elements greater than or equal to this threshold 2m 2m

in each row (column) ofd. This allows Step 3 to perform anBy conservatively estimating: as |log,(N/16)], a bound on
edge-coloring of the corresponding bipartite gra@gh in at the total weight is then

mostd — 1 colors due to the classical result of Konig. N

For each of thel — 1 colors, Step 4 produces two configura- 47 {logz (ﬁ)J + 2T (N +2 UOg? (E)J + 4)
tions, meeting the bound @fl total configuration per iteration 16 gllog2(£5)] +1

of the outer loop. Considering a single color of edges, Step 4firska pertect matching is a subset of edges such that each vertex is incident with
divides this group of edges in half (Step 4a). Then Step 4b builelgctly one edge in that subset.

Step 6.

23 (2 —1)=22"" —m-2)< R
=1

2§:(2i —-1) FZ—TJ < 4Tm.

i=1

—4T.

(N—2(2™*! —m—2)) {

—4T.
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of switchings that grows linearly witv. The DOUBLE algo-
rithm (Algorithm 3) produces schedules with these properties
in O(N?log N) time using the edge-coloring algorithm of
(1000 ] [15].
0100
88(1)? Algorithm 3 Near-minimum switchings (DOUBLE)
. Step 1) Split C. Define an N x N matrix A such
3 - ¢(1) - 32_ that
(0001 | ai; = | S|,
1000 e { L J
0100
0010 Step 2) Color A. Construct the bipartite
| .'._ multigraph G4 from A (the number of
¢(2) =32 edges between vertices is equal to the
value of the corresponding entry of A).
~ _ Find a minimal edge-coloring of A. Set
0100 1 — 1.
38(1)? Step 3) Schedule coarse . For a specific color
1000 in the edge-coloring of G4, construct a
switch configuration P(i) from the edges
T 9(3) =16 assigned that color. Set ¢(i) «— [T/N] and
- i «— i+ 1. Repeat Step 3 for the each of
0010 the colors in Ga.
?88; Step 4) Schedule fine . Find any N nonoverlap-
0100 ping switch schedules P(N + 1),...,P(2N)
and set ¢(N+1),...,¢(2N) to [T/N].
0(4) =16

DOUBLE works by separating’ into coarseandfine ma-
Fig. 6. Example execution of MINY' = 32, T = 32). Only the firstfew  trices and devoted’ configurations to each. The algorithm first
steps are shown. generates the coarse matrilxby dividing the elements of’
by T'/N and taking the floor. The rows and columnsA4ium
Through further simplification, this expression can be boundeg at mostN, thus the corresponding bipartite multigraph can
by 47'(4 + logy N). Therefore, the minimum speedup ishe edge-colored iV colors. Each subset of edges assigned

sufficient. U to a particular color forms a matching, which is weighted by
Corollary 2: A speedup of [T/N7. The fine matrix forC' does not need to be explicitly
4T(4 + log, N) computed because its e!emeqts are guarantged to be less than
TSN [T/N]. Thus, anyN configurations that collectively represent

] o ] ] every entry ol”, each weighted byI"/N], can be used to cover

is sufficient to schedul€’(T') in T slot times. the fine portion.

. Proof: This foIIovys_ directly from the number of switch- 5 example execution of DOUBLE is shown in Fig. 7. The al-

ings N, = N and the minimum speedup 8f,in =4(4+logs N)  gorithm begins by creating the coarse mattiky dividing each

required for MIN. _ - U elementinC by T/N and taking the floor. So, in the example,
So, while successfully reducing the number of conﬁguratm@ltry (1,1) ofA contains|16/(T/N)| = 16/(16/4) = 4. The

to the minimum possible, the amount of speedup required f&sulting matrixA has row and column sums4, ensuring that

support this few switchings grows witlg V. This could be i can be edge colored with 4 colors (Step 2). Then, the edges

an effective tradeoff for switches with inexpensive bandwidfssigned to each color are converted to schedules in Step 3. For

ora .smaII number of ports. However, for Iarggr swnchgs, th&ample,P(l) corresponds to the subset of edges assigned to

required speedup factor could be too expensive. In this cagjor 1 during Step 2. Also, some of the schedules may not be

a more attractive alternative may be to use a near-minimyPmplete permutations because the row and column sums of

number of configurations. are less thaV, such asP(3) andP(4), but it s still guaranteed
. o that all the elements of are covered. In general, Step 3 creates
C. Near-Minimum Switchings at mostN matchings with weighf7'/N1, for a total weight of

As described in the previous section, using the minimapproximatelyT'.
number of switchings requires a speedup of at léastV. Step 4 picks four nonoverlapping schedul&§4) through
In this section, we show that by allowirjV switchings, the P(8), and each is assigned a weight{@f/N] = 4. In general,
minimum speedupS,,;, can be reduced to approximatelyStep 4 creates the same total weight as Step 3: approximfately
two. Most importantly, the minimum speedup is no longer &herefore, the total weight to schedul&T") using DOUBLE
function of N. This approach has the advantage of the EXACIE approximately27" and S,,,;, = 2. The general operation of
algorithm, a small constant speedup, combined with a numi2©UBLE is verified in the Appendix.
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1600 0 Step 1 be reconfigured while others continue to transmit, a more gen-
C(16) = 03112 4000 eral scheduling problem can be considered. In fact, scheduling
0736 0020 a switch with arbitrary reconfigurations can be formulated as
0628 0101 anopen shop schedulingroblem—a classic problem in oper-
s,f;fgf/ 0102 ations research. We present this formulation and apply the list
scheduling algorithm of [9] to the problem. List scheduling is
1 1 1 shown to offer identical guarantees to the DOUBLE algorithm
- 1 p(2)- 1 at a slightly lower algorithmic complexity.
1 1
L J ! A. Open Shop Formulation
o(1) =4 (2) =4
4 1 4 An open shop is a collection of jobsand machined/. Each
individual jobj; € .J is a set of taskg; = {¢; 1,...%; x}, which
P(3)= P(4)5 must be executed under several constraints: eactt tgskust
1] i ] be executed on machine, € M for a total ofdur(t; ,) time
0(3) = 4 o(4) =4 and each machine can only execute at most task at any given
Step 4 time. Sinc_e the shop is “open,” the tasks of each job may be
- 1 executed in any order.
! 1 ! 1 For a given open shop problem, we are concerned with min-
PG , [PO= 1 imizing themakesparor the time required to complete all the
1 1 jobs. In open shop literature, this problem is often abbreviated
'¢(5) 4 -q)(s) _ 4J as_O||Omax and is known to be NP-hard for more than three ma-
; r chines [16].
1 1 Using this notation, the constrained switch scheduling
P(N) 4 P@)= problem can be expressed as an open shop problem. For a re-
1 1 guest matrixC, the switch speeduf, and switching overhead
o(7) = 4 0(8) = 4 6, the individual tasks of a corresponding open shop are defined
as
Fig. 7. Example execution of DOUBLEY = 4, T = 16).
dur(tm) =6+ C(?z,] .

The required speedup is now simply derived from the weights
assigned by DOUBLE. The jobs correspond to inputs of the swit¢Hij = N, and the
Theorem 4:To transmit a general cumulative schedule manachines correspond to the outpufe| = N.
trix C(T) in 2N switch configurationsS.,,,;, = 2 is sufficient ~ Then, any constrained switch scheduling problem can be
whenT' is a multiple of V. solved using algorithms developed for open shop scheduling.
Proof: DOUBLE produces2N switch configurations, When a particular task; ; is scheduled on machine;, the
each with a weight of 7'/N']. Summing these weights switch is configured to connect inpitto outputj. Since any
valid open shop schedule runs the task for dur(t; ;) time,

IN {Z-‘ — 2T the corresponding constrained switch schedule has enough
N time to configure the switch, which requiréstime, and pass
- . - the data from input to outputj, which requires; ; /S time.
Therefore, the minimum speedup is sufficient. ] P Py g il

Corollary 3: A speedup of

B. List Scheduling
2T

T — 95N List scheduling (LIST) is a greedy algorithm that can be used
to approximate the optimal open shop schedule within a factor
is sufficient to schedul€’(T") in T slot times wher?" is a mul-  of two [9]. LIST starts by assigning a job to each machine. If
tiple of V. multiple jobs are contending for a single machine, one of the
Proof: This follows directly from the number of switch- jobs is chosen arbitrarily. Then the initial schedule of jobs to ma-

ings N, = 2N and the minimum speedup 8f.;, = 2 required chines continues until a task is complete and the corresponding
for DOUBLE. L) machine is freed. Once a machine is idle, any job not currently
assigned to another machine that also has a task remaining for
the free machine is placed on that machine. Again, contention
is resolved arbitrarily. This continues until all the jobs are com-
plete. Creating a schedule with LIST requit@éN?) time.

In the previous section, we presented several algorithms thafhe best bounds on the maximum schedule length produced
achieve guaranteed performance with simultaneous reconfiy-LIST is the sum of the time to process the longest job (sum
urations. When the underlying technology allows switches tf its tasks’ durations) and the time to process the most heavily

V. SCHEDULING WITH ARBITRARY RECONFIGURATIONS
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used machine (sum of all tasks for that machine) [11]. Using the TABLE | 7
formulation for constrained switches described in the previou$UMMARY OF ALGORITHM COSTS(ALSO SHOWN FORN = 128, § = 200)
section,_the_ maximum schedule lengtt),.. produced by list [ EXACT I MIN [ DOUBLE | LIST
SChedU“ng IS Ns N2 _ 2N+ 2 N 2N 2N
(16 130) (128) (256) (256)
Crmax < max Z dur(t; j) + max Z dur(t; ;) Sin 1 4(4 +1og, N) 2 2
b T M @4) @ @
Cij Cii Tomin | 0(N2 —2N +2) 6N 20N 20N
< mgxz (5 + ;’f ) + maXZ (5 + ;’f ) (3 226 000) (25 600) (51200) | (51200)
J ! i Requires
T ?relég:lz;irg no no no yes
<2 <5N + §> .

%\gitches, the potential savings from using slower switches may

To guarantee the operation of the emulation architecture, { Bre than offset the cost required to provide a speedup of 2
speedup provided must ensure the schedule length is atimo LIST requires that switches to be reconfigured at arbi-

lot tim hereforeS is chosen such that = 2(6 N +T/S). . . ) T
slottimes, thereforef is chosen such that (8N +T/8) trary times, in contrast to the simultaneous reconfiguration

Rewriting of EXACT, MIN, and DOUBLE. Despite this additional
27 flexibility, it does not offer any improvement in its worst
S = T _9%N" case guarantees. Moreover, list scheduling is the best known

practical algorithm for generating open shop schedules in poly-
Using this, we know the minimum speedup for list schedulingomial time [10], [11]. It remains an open question whether a
iS Smin = 2 and the minimum delay i#,;, = 26 N. practical algorithm can improve the speedup or delay require-

Although LIST allows less restricted assignment of switchingnents by taking advantage of arbitrary switch configurations.
times compared to the simultaneous switching algorithms pre-A summary of the costs for all scheduling algorithms is shown
sented in Section 1V, it offers no worst case advantage over tinelable I, and the tradeoffs between the different algorithms are
DOUBLE algorithm. However, it does have a slight improverepresented graphically in Fig. 8. Fig. 8(a) shows a phase dia-
ment in running time. gram indicating which algorithm gives the minimum speedup

for particular values of and V. The regions partitioned by the
V1. DISCUSSION lines represent the parameters for which the labeled algorithm
provides the smallest speedup. So, for small valueg,ahe
MIN algorithm has the smallest speedup because it is the only

The previous sections detailed four algorithms for uncomdgorithm for whichT' > T.,;,. Soon afterl’ is large enough
strained switch emulation. Given these algorithms, which is tifier DOUBLE or LIST to be used, they become the algorithms
most appropriate for a particular system? The answer depenfishoice and likewise for the exact algorithm. For the example
on the relative costs of bandwidth, delay, storage, and tbeN = 128 andé = 200, DOUBLE and LIST become pre-
switching overhead in the system. ferred at approximately’ = 53 200 slot times and EXACT pro-

If the system designer is insensitive to delay and storagiles the lowest speedup At= 6 400 000 slot times [marked
requirements, but considers bandwidth expensive, then #eecircles in Fig. 8(a)]. A similar graph is shown in Fig. 8(b) for
EXACT algorithm is most likely an appropriate design choicghe minimum delayl’ given S and N. As the speedup passes
However, exact scheduling can lead to large delays, even wkhDOUBLE and LIST become the favored algorithms, and at
feasible system parameters. For example, consider a 128-godt+ log, V), MIN is preferred. In the example, DOUBLE and
switch with 10-Gb/s input lines and a 64-byte slot (slot timeIST provide the smallest delay at just beyasid= 2 and MIN
of 50 ns). Fast MEMS mirror switches are used, which haveadS = 54.4 [marked in Fig. 8(b)].
switching time of§ = 200 or 10 us [4]. For exact matching, Finally, while the delays in this example may seem large for
Twin = 0N, is approximately 3.2 million slot times or 160 msapplications such as a packet switch, it is important to realize
which makes the minimum fixed del&y’+ H equal to 320 ms that they are within a small constant factor of the minimum pos-
plus the scheduling time. This delay is obviously unacceptaldible delays for the switch size and reconfiguration overhead.
for many switching applications. To see this, consider the case when a cell arrives at each of the

The minimum switching algorithm MIN greatly reduces theV input ports at the same time all destined to the same output.
fixed delay over the exact algorithm, but at the cost of increasEdr an unconstrained switch, it is obvious that these cells can
speedup. In our example 128-port switch, MIN reduces the mibe transferred inV slot times, giving a delay oV slot times
imum fixed delay to 2.5 ms, but requires a minimum speedup tf the last cell. Similarly, a constrained switch in the same sit-
4(4 + logy, N) = 44. uation requiresV slot times plus an additiona( N — 1) slot

DOUBLE provides a balance between the these two etimes to reconfigure the switch between cells, giving a delay of
tremes. For the 128-port switch, a minimum fixed delay aipproximately(1 + §)N for the last cell. This simple example
5 ms and minimum speedup of 2 are necessary. So, compaliedtrates how a particular cell must incur an additional delay
to the exact algorithm, a speedup of 2 reduces the fixed delafy(1 + )N — N = 6N slot times when traveling through the
by a factor of 128. Alternatively, DOUBLE allows a switchingconstrained switch. Assumind = T, the delays incurred by
overhead that is 128 times greater than the exact algorithm faur architecture argé N for MIN and 66 N for DOUBLE and
the same fixed delay. Assuming there is a cost benefit in slowdST, only slightly above the minimum.

A. Analysis of Design Tradeoffs
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of switchingsN, = N and then tries to minimize schedule
length by greedily considering the largest unscheduled elements
of C. The algorithm is designed for average case performance
and does not have a worst case guarantee.

Average case performance of the algorithms is determined by
running multiple trials on randomly generated request matrices.
Each request matrix’(T') is created by summin@’ random
permutation matrices, which are uniformly selected from the set
of all permutations.

The average minimum speedp,;, (one over the fraction
of empty slots) is shown versus the switch si¥en Fig. 9(a)
for T' = 1024. Similar trends in both the average speedup and
average delay are observed for other values.dy definition,
EXACT fills all the slots and, therefore, only requirgg;,, = 1.
p e In contrast, MIN' leaves many empty slots and requires a
Switch size, N speedup that steadily increases wi¥h However, the average

(@ case speedup for MINis significantly less than the worst case

" " bound derived in Section IV. The sawtooth shape of M&N

speedup is caused by jumps in the number of iterations of the
outer loop—each “tooth” in the graph corresponds roughly to
the value ofV for which one more iteration of Steps 2-5 can be
performed.

DOUBLE*'s average speedup stays near 1.5 or approxi-
mately 75% of its worst case bound of 2. The oscillationd/as
increases beyond 100 are due to the ceiling function used to
DOUBLE compute the weight in Step 3 of DOUBEEuUp to N schedules
20f List 1 with total weight at mostV [7'/N'| are generated. The function
N|[T/N1] oscillates between 1 and 2 &é increases, which
corresponds directly to the oscillations in the speedup required
for DOUBLE*.

The speedup required for LIST has two distinct phases. Ini-

: Not Fpasible . 3 tially, the average speedup remains near optimal when the rela-
1° Switch size, N N tive difference between entries@tends to be smallV < T').

(b) However, asV increases, the relative difference also increases,
Fig. 8. Algorithm phase diagrams over the design space. (a) Minimu%ﬂusmg ajl_,lmpmthe speedL_tho approximately 1.5. For the case
speedup. (b) Minimum delay. shown in Fig. 9(a), the transition between the two phases of op-
eration occurs at approximately = 90. As T' increases, this

B. AverageCase Performance of Algorithms tran.sition point occurs at larger \_/aluest
inally, GOPAL generally gives the best average case

In the previous sections, only the worst case performance : ;
) ) T : eedup excluding EXACT. It stays near optimal and grows
the different scheduling algorithms has been considered. W ﬁg sligphtly asN igcreases y P 9

the worst case is important for guaranteeing the correctness o ignificantly less variation is found in the average minimum
the emulation architecture, average case performance of the fays of the algorithms, which are shown in Fig. 9(b) normal-
gorithms may be of interest in systems that contain a mixturei ’ '

. . d tos. EXACT follows the N2 — 2N + 2 curve necessary
best effort data with data that requires guarantees through { %revent empty slots. By definition, the minimum switchings
switch.

i ) algorithms, MIN* and GOPAL, have normalized delays &f
As described, the MIN and DOUBLE algorithms are nofypjje poUBLE* can produce fewer than schedules in the

designed to optimize average case performance. So, for s »qe case, the figure shows the average delay is only slightly
section, TOd'f'ed versions of th_ese algorithms, l\7|_||‘&1nd below2N. However, LIST has close to optimal delay in the av-
DOUBLE" are used. In MIN, the inner loop (Step 4) is only g5q6 case, generally using only a few more tNaswitchings.
repeated for the actual number of colors required ¢bx. In general, the two greedy scheduling algorithms, GOPAL

AISO_’ the weights in Steps 4b, 4c,.and 6 are selected to be LIST, showed the best average case performance for uni-
maximum value of the corresponding scheduled elements fr Fm random request matrices

C instead of being the largest possible value. Finally, the outer
loop (Steps 2-5) is repeated until exacNy4 schedules have
been produced. DOUBLEcontains a similar change: in Step
4 the weights are selected to be the maximum value required td he time-slot assignment problem has received significant at-
cover the fine portion of the matrix. tention in the context of scheduling satellite-switched time-divi-
For comparison, we also include GOPAL, the algorithm deion multiple access (SS/TDMA) systems. Notably, algorithms
scribed in [8]. GOPAL first guarantees the minimum numbebo find exact decomposition of a matkixin a minimum number

Normalized delay, T/

Not Feasible

VII. RELATED WORK
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The impact of constrained switches on packet switch sched-
uling has also been addressed. The work of [20] develops an
architecture and several algorithms to guarantee throughput and
delay given a larger data envelope and, therefore, fewer logical
switch configurations. This work complements our approach in
that we develop techniques to implement a given number of log-
ical switch configurations in fewer physical configurations, thus
reducing the speedup requirements of the switch.

Also, as noted in both [21] and [22], the task of computing a
schedule for amnconstrainedgswitch is becoming a more dif-
ficult problem as switch sizes scale. Both of these papers pro-
vide solutions to this problem centered around decomposing a
traffic matrix C' into permutation matrices and show that the re-
sulting switch is stable. The algorithms presented in this paper

— could readily be applied to this problem, extending the work of
Switch size, N [21] and [22] to switches with nonzero switching overhead. [22]

(@) also notes that the exact scheduling algorithm’s requirement of
wb — ' T O(N?) switch configurations limits scalability and proposes a
. multi-stage network to solve the problem. In this case in partic-
. ular, the DOUBLE or LIST algorithms could also provide scal-
g ability for a speedup of 2.
.- 1 As described in Section V, constrained switch scheduling can
- be castas an open shop scheduling problem. Itis a long-standing
open question in operations research whether the factor of two is
| . | a necessary condition for list scheduling and also whether prac-
tical algorithms exist that outperform list scheduling. A polyno-
mial time approximation scheme (PTASdr open shop sched-
uling is given in [23], but the authors admit the constant terms
in the run-time of the algorithm make it impractical.

min
N
T

Average minimum speedup, S
n

min
\

o,
T
\

Normalized average minimum delay, T_ /8
3,
AY
\

VIII. CONCLUSION

Switch size, N Optical switching technologies are becoming an attractive al-
(b) ternative to electronic switches as the demand for switch band-
width and port count increase exponentially. However, many of
these optical technologies have a large switching overhead, re-
quiring from nanoseconds to milliseconds to reconfigure. Ef-
ficient scheduling of these constrained switches requires algo-
of switch configurations are described in [7]. The idea of usimithms that consider this overhead.
only N switch configurations was introduced in [8], where the We proposed an architecture and algorithms that allow a
authors proved the problem of finding the minimum lengthonstrained switch to exactly emulate an unconstrained switch
schedule for a particular matriX to be NP-complete. They alsowithin a fixed delay. This decouples the task of accounting for
introduced a heuristic algorithm to create the schedules. Ttmnfiguration overhead from the traditional switch scheduling
SS/TDMA scheduling problem is the same as the schedulipgoblem. Constrained switches can then be used directly in
problem considered in this paper. However, making an analodgsigns that can tolerate the fixed delay.
to packet routing, existing algorithms provide “best effort” Providing emulation requires scheduling algorithms that have
schedules, where the goal is to minimize the average schedylaranteed bounds on the length of their schedules. We ana-
length. We demonstrated new algorithms that solve the saipeed the speedup and delay required for emulation using three
scheduling problem, but have provable worst case guarantbesinded algorithms across a range of port si¥eand batch
necessary for emulation. sizesT'. The EXACT algorithm provides the lowest speedup re-
More recently, similar problems have been considered guirement, butis only attractive for very large batch sizes, which
wavelength-division multiplexing (WDM) systems. Both [17]are needed to amortize the cost of its quadratic number of con-
and [18] provide heuristic algorithms for scheduling transmigigurations, or very low port counts. We developed the MIN al-
sions in star networks given a number of tunable receivers agarithm to use the minimum number of switchings = IV, but
transmitters with nonzero tuning latencies. Optimal all-to-alhe speedup required was shown to be prohibitdgog N). As
transmission schedules for the star networks are considere@ iresult, MIN is only attractive for small batch sizes, where it is
[19]. The problems addressed by these researchers are ntbeconly algorithm that will work. Alternatively, our DOUBLE
broad in that multiple transmitters and receivers per input are
used, but again schedules are chosen to minimize the averagg pras approximates the optimal solution of a problem to within a factor
length, not to provide a bounded worst case. of (1 + €) for anye > 0.

Fig. 9. Average case comparison of scheduling algorithiis=£ 1024).
(a) Average minimum speedup. (b) Average minimum delay.
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algorithm balances a small number of switchings = 2N at most one. Therefore, the minimum degree of the remaining
with a constant speedup of 2. DOUBLE offers the minimum rerertices ofG’ is at least: — |M]|.
quired speedup across a wide rangéVoand7'. The resulting By Theorem 7, there is a perfect matchingihif & — | M| >
family of algorithms provide a range of speedup versus deléy—|M|)/2, or rewriting, thatM| < 2k—n. From the Theorem
tradeoffs, making emulation feasible over a large design spaseatement|M| < n/2 = 2(3n/4) — n < 2k — n, so there is

By allowing arbitrary reconfiguration of the switching ele-a perfect matchind/’ in G'. If a vertex inG' was not covered
ments, the constrained switching problem was then formulatgdthe partial matchingV, it was included inG’ and must be
as an open shop scheduling problem. A simple approximatiggvered in the perfect matchinyf’. Therefore M U M’ is a
algorithm LIST was shown to give the same speedup and defsatfect matching off andM is a subset of this matching.0]
requirements of DOUBLE. Interestingly, LIST gives the best Now the correctness of MIN can be examined step-by-step.
known bounds for a practical open shop scheduling algorith@yep 1 simply initializes the algorithm. Step 2 identifies all
so for our architecture there is no gain in adopting switchingyges greater thaifi/d that have yet to be scheduled. The
technologies that allow arbitrary reconfiguration. row (column) sums of4 are less thani. Otherwise, the

The work presented here raises many interesting ques“%'&?responding row (column) of would be greater than
for future study. The algorithms we have presented repres%@{/d)d — T, which is a contradiction because the row
several points in the space &, versusS ;.. Itis interesting to (column) sums of” are at most". The graph(Z, constructed
ask v2vhat happens at other points. As we increlisérom 2V in Step 3 has a maximum degree of at mést 1 because the
to N how rapidly doesS,,;, fall from 2 to 1? Can a constantrOW (column) sums ofd are less thani. Then, by Konig's

. i 2 Fi i i )
Swmin be achieved for a, less thar2 N ? Finally, while LIST is Theorem ., can always be edge colored with- 1 colors.

currently the best known practical approximation algorithm for Now that all the edges have been identified in Step 2 and col-

open shop scheduling, itis stillan open question whetheram%rreed in Step 3, Step 4 loops ovér 1 colors, which is suffi-

efficient algorithm exists. For constrained switch scheduling, it nt to visit each of the colors assignedq. In Step 4a, half

) o |
may be possible to take advantage of the specifics of the problg he edges of a particular color are used as a partial matching

to develop a tighter bound on the open shop schedule Iengthl.n B. SinceN is assumed to be evef{M. |/2] is at mostN/2.
By Theorem 8, Step 4a finds a perfect matching-gf that in-
cludesE, if Gp is k-regular withk > 3N/4. Regularity is

Two classical results from graph theory are used in the fanforced by the fact that only perfect matchings are removed
lowing sections. from B throughout the algorithm. The condition a@nis ver-

Theorem 5: (Hall) For a bipartite grapli = (X UY, E), a ified below. Also, it is possible that some of the edgesin
perfect matching exists if and only if for all nonem@#yC X, were scheduled, and hence removed, since the coloring in Step
|S| < [NV (S)| whereN(S) is the set of vertices adjacent$o 3. This is handled by simply removing these edges fiBm

Theorem 6: (Konig) There exists an edge-coloring of anywhich can only reduceéF, |, ensuring the conditions of The-
bipartite multigraph with a maximum degree Afwhich uses orem 8 still hold. Again, sincé/ is even, there are at mo&t/2

APPENDIX

A colors. edges remaining i, for Step 4b, so another perfect matching
can be found. Therefore, Steps 4a and 4b together ensure that all
A. Correctness of MIN the edges i/ 4, assigned to a particular color will be scheduled.
For simplicity, the MIN algorithm is presented faF > 8 and  Since this process is repeated over all the colors, all the edges
for this proof of correctness we also assuiiés even. in G 4 will be scheduled during Step 4.

Theorem 7:For a bipartite graptG = (X U Y, E) with Once Step 5 is reached, all the entries greaterftidthave
|X| = |Y| = n, there always exists a perfect matchingin been scheduled during Step 4. So, during the next iteration, no
if its minimum degree is greater thar2. entry will be greater thaT/d (d has been updated in Step
Proof: Assume no perfect matching exists in the grap/®), which ensures the weight assigned to the schedules during
Then by Hall's Theorem, there must exist a nonemptg X Steps 4a, 4b, and 6 are sufficient to cover the corresponding
such that|S| > |[N(S)|. Since the minimum degree ¢f is elements ofC. Also, since2(d — 1) additional schedules are
greater tham /2, then|S| > |NV(S)| > n/2. Also, |X — S| < produced in each loop, the loop condition during Step 5 ensures
n/2. the above constraint dnis met. Finally, the Step 6 extracts the
By definition of \/(S) there are no edges betweEn- A/ (S) remaining perfect matchings frof, which are guaranteed to
and S. Therefore, for any vertex € (Y — N(S)), N(i) C eXist becaus&/ is regular.
(X — S). This implies|N(7)] < |X — S| < n/2, which is a
contradiction because the degreé isfgreater tham /2. There- B. Correctness of DOUBLE
fore, G contains a perfect matching. O The row (column) sums oft, created in Step 1, are at most
Theorem 8: For ak-regular bipartite grapty = (X UY,E) N
with | X| = |Y| = n andk > 3n/4, any partial matching/ of
G with |M| < n/2 is a subset of a perfect matchingGf Z S Z {ci,jJ < 2 Ci - N
Proof: Construct a copy off in G’. For each edge in/, — |- £ '
remove the edge, its endpoints, and edges incident to those end- !
points fromG’. This leaveg(n—|M]|) vertices inG’. Also, each So, by Konig’'s Theorem, the edge-coloring produced during
removal reduces the degree of the remaining vertices'dfy Step 2 uses at mogf colors. Step 3 then produces at mast
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schedules, using all the edgesAnexactly once. Finally, Step [17] M. Chen and T.-S. Yum, “A conflict-free protocol for optical WDMA

4 covers every entry uniformly usiny more schedules, for a networks,” inProc. GLOBECOM1991, pp. 1276-1281.
| of ON schedul A IR o [18] A. Ganz and Y. Gao, “A time-wavelength assignment algorithm for a
total of at mos schedules. Any entryi, j) is covereds; ; WDM star network,” inProc. IEEE INFOCOM 1992, pp. 2144—2150.

times in Step 3 and once more in Step 4: [19] G. R. Pieris and G. H. Sasaki, “Scheduling transmissions in WDM

broadcast-and-select network$£EE/ACM Trans. Networkingsol. 2,

T Ci T pp. 105-110, Apr. 1994,
(ai,j + 1) N = T +1 N [20] K. Kar, “Reduced complexity input buffered switches,” Rtoc. Hot
N Interconnects VILI2000, pp. 13—-20.

i (T [21] E. Altman, Z. Liu, and R. Righter, “Scheduling of an input-queued
> ) = Cij- switch to achieve maximal throughputProbabil. Eng. Inform. Sgi.
- £ \N ’ vol. 14, pp. 327-334, 2000.

C. S. Chang, W. J. Chen, and H. Y. Huang, “Birkhoff-von Neumann

22]
So, the schedules produced by DOUBLE cover every eleme'['t input buffered crossbar switches,”ftroc. IEEE INFOCOM 2000, pp.

of C.

1614-1623.
[23] S. Sevastianov and G. Woeginger, “Makespan minimization in open
shops: a polynomial time approximation schemblathemat. Pro-
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