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ABSTRACT
The increasing application space of interconnection networks now
encompasses several applications, such as packet routing and I/O
interconnect, where the throughput of a routing algorithm, not just
its locality, becomes an important performance metric. We show
that the problem of designing oblivious routing algorithms that have
high worst-case or average-case throughput can be cast as a linear
program. Globally optimal solutions to these optimization prob-
lems can be efficiently found, yielding provably good oblivious
routing algorithms.

Applying these techniques to k-ary 2-cube (tori) networks shows
that previous routing algorithms sacrifice too much locality to achieve
optimal worst-case throughput. This motivates the development of
two new algorithms, IVAL and 2TURN, which improve locality to
within 0.3% of optimal for an 8-ary 2-cube. Both algorithms have
simple, deadlock-free implementations. Expanding the analysis of
tori to average-case throughput reveals that there is a weak trade-
off between average-case and worst-case throughput. Specifically,
both the IVAL and 2TURN algorithms developed for the worst-case
also have good average-case throughput.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Routing and Layout; C.1.2
[Processor Architectures]: Multiple Data Stream Architectures—
Interconnection architectures

General Terms
Algorithms, Performance
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1. INTRODUCTION
As interconnection networks are applied to throughput-centric

applications, such as packet routing [1] and I/O interconnect [2],
the throughput of a routing algorithm becomes an important design
consideration. For example, in the packet routing application, little
can be said about the incoming traffic patterns, and there is no path
for backpressure to slow the flow of incoming packets. Therefore,
the guaranteed throughput of the router is bounded by the worst-
case throughput over all traffic patterns. In many other applications,
such as multiprocessor interconnect, it is desirable to maximize the
average-case throughput of the interconnection network.

In this paper, we show that the design of oblivious routing algo-
rithms with optimal worst-case and average-case throughput can be
cast as multicommodity flow (MCF) problems. Worst-case through-
put can be reformulated in terms of a linear cost function and linear
constraints and average-case throughput can be accurately approx-
imated with a linear cost function, allowing both routing algorithm
design problems to be expressed as linear programs. The resulting
optimization problems can be solved efficiently and exactly, yield-
ing globally optimal solutions.

To demonstrate the practical utility of optimization in designing
throughput-centric routing algorithms, the techniques are applied to
the problem of routing in k-ary 2-cube (tori) topologies. Previous
routing algorithms and theoretical work have explored the tradeoff
between locality and worst-case throughput of a routing algorithm,
but using the framework developed in this paper, this tradeoff can
be exactly quantified by solving a series of linear programs. An
example of this tradeoff is shown in Figure 1 for an 8-ary 2-cube
topology. Each point in this space represents an oblivious routing
algorithm with a particular worst-case throughput and average path
length (locality). The region of feasible algorithms is shown in
gray and, because the linear programming approach is guaranteed
to find globally optimal solutions, any algorithm outside this feasi-
ble region is provably unobtainable. Therefore, the set of routing
algorithms denoted by the solid line at the edge of feasible region
are Pareto optimal — for each Pareto optimal point, no oblivious
routing algorithm can achieve both better worst-case throughput
and better locality. Plotting the performance of existing routing al-
gorithms in this tradeoff space reveals that these algorithms often
lie far from the Pareto optimal.

Motivated by the lack of routing algorithms that have maximum
worst-case throughput while achieving near-optimal locality, two
new routing algorithms, IVAL and 2TURN, are presented that im-
prove locality over Valiant’s routing algorithm (VAL) [3] by 19.3%
and 25.8%, respectively, with 2TURN only 0.3% from optimal.
These new algorithms along with simple dimension-order routing
(DOR) [4] cover the two extremes of the Pareto optimal curve and
we show that interpolatedrouting algorithms can be created that lie
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Figure 1: Tradeoff between average path length (vertical axis)
and worst-case throughput (horizontal axis) on the 8-ary 2-
cube. The optimal tradeoff is shown as a solid line and the
region of feasible routing algorithms is gray. The performance
of several routing algorithms are also shown as points in the
tradeoff space.

between the extreme points. For example, by interpolating between
2TURN and DOR, it is possible to realize a routing algorithm that
is within 10% of any particular Pareto optimal routing algorithm.

A similar analysis for average-case throughput again reveals that
most existing algorithms lie far from the optimal tradeoff curve.
However, the two new algorithms, IVAL and 2TURN, have near
optimal average-case throughput with 2TURN within 10% of the
maximum average-case throughput. This reveals an interesting re-
sult for k-ary 2-cubes: there is almost no tradeoff between worst-
case throughput and average-case throughput. That is, an oblivious
routing algorithm does not have to sacrifice average-case through-
put to achieve good worst-case throughput and vice-versa. A new
routing algorithm 2TURNA specifically optimized for average case
performance is also introduced and lies only 8% from the maxi-
mum average-case throughput.

The remainder of this paper is organized as follows. Section 2
describes the formulation of routing algorithm design as an opti-
mization problem along with several basic performance metrics.
Throughput-centric cost functions are presented in Section 3 and
the complexity of the resulting is optimization problems are ad-
dressed in Section 4. These ideas are then applied to torus networks
in Section 5. Related work is discussed in Section 6 and Section 7
presents conclusions.

2. BACKGROUND
We first describe the definitions and assumptions for the net-

works and routing algorithms considered in this paper. Then, rout-
ing algorithm design is cast as a multicommodity flow problem.
This formulation allows several basic metrics of network perfor-
mance, such as throughput and latency, to be expressed.

2.1 Network Model and Definitions
The topology of each interconnection network in this paper is

described by a directed graph (N, C) of N nodes (vertices) and
C channels (edges). Nodes have unit injection and ejection band-
width1 and the channel bandwidths bc are expressed as a multiple
of the unit bandwidth.

Only randomized, oblivious routing algorithmsare considered.
For a randomized oblivious routing algorithm, the path a packet
takes through the network is only a function of its source, destina-
tion, and a random variable — network state is not considered. This
excludes the class of adaptive routing algorithmswhich can incor-
porate network state into their routing decisions. The affects of this
restriction are discussed in Section 5.5 for k-ary 2-cube topologies.

To simplify the analysis and isolate our results from any partic-
ular flow-control or packet scheduling scheme, the ideal through-
put of our network is determined completely by edge congestion.
The system is assumed to be stable, if for every channel, the aver-
age number of packets that need to cross that channel per cycle is
less than the bandwidth of the channel. If the number of packets
that need to cross a channel meets or exceeds a channel’s band-
width, this channel is saturated. This is obviously an upper bound
on the performance of any practical network. As discussed in [5],
this upper bound is achievable with output queuing in each node
router, large queues, a simple scheduling protocol, and a burstiness
constraint on the incoming traffic process. Practical systems can
typically reach 60-75% of this bound [6].

2.2 Oblivious Routing as a Flow Problem
Oblivious routing algorithm design can be captured as a multi-

commodity flow problem (MCF) [7][8]. First, an oblivious routing
algorithm defines a probability distribution over the paths in the
network for each source-destination pair — a total of N2 distri-
butions. To describe a routing algorithm R, we let R(p) be the
probability that a packet uses the path p. Then, any R represents a
valid oblivious routing algorithm as long as∑

p∈Ps,d

R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,

where P is the set of all paths and Ps,d is the set of all paths be-
tween source s and destination d. Without eliminating any produc-
tive routing algorithms, we exclude paths that revisit channels. In
the terminology of MCF’s, this formulation creates a commodity
for each of the N2 source-destination pairs in the network.

Then, for a general cost function C(R), the routing algorithm
design problems considered in this paper can be expressed as an
optimization problem:

minimize C(R)

subject to
∑

p∈Ps,d
R(p) = 1, ∀s, d ∈ N

R(p) ≥ 0, ∀p ∈ P.

(1)

That is, find a valid, oblivious routing algorithm R that minimizes
the cost function C(R). In later sections, we will also add side
constraints to this basic formulations to study the tradeoff between
performance metrics.

1The constraint that each node have unit injection/ejection band-
width can be relaxed by modeling a single logical node with several
unit bandwidth nodes (e.g. a node with an injection/ejection band-
width of two units can be replaced by two unit bandwidth nodes
during optimization).



Throughout the paper, we are interested in both convex and linear
cost functions in R. Informally, a convex program (CP) specifies a
convex cost function to be minimized over a convex set. Because
linear constraints define a convex set, the routing design problem
described above is a CP when C(R) is convex. Efficient techniques
exist for finding globally optimal solutions to CP’s [9][10]. When
both the constraints and cost function are linear, the optimization
problem becomes a linear program (LP). LP’s are subclass of CP’s
and specialized LP solvers can handle larger problems than gen-
eral convex optimization techniques. Thus, expressing a routing
algorithm design problems as a linear program has a significant
practical benefit.

2.3 Basic Metrics
Using the multicommodity flow formulation introduced in the

previous section, several basic network measures can be defined.
By our definition of stability, the maximum throughput a network
can sustain under a given traffic pattern is determined by the chan-
nel loads — once the average load on a channel reaches the chan-
nel’s capacity, that channel is saturated. The first channel to saturate
determines the network’s throughput.

The expected number of packets that cross a particular channel
c per cycle, referred to as the load γc, is the sum of the loads con-
tributed by each source-destination pair. In terms of both the traffic
pattern Λ and the routing algorithm R

γc(R, Λ) =
∑
s,d

λs,d

∑
p:c∈p,
p∈Ps,d

R(p). (2)

Each entry of the traffic pattern λs,d specifies the fraction of source
s’s injection bandwidth carrying traffic destined to node d. Since
each node is defined to have unit injection and ejection bandwidth,
the traffic matrix Λ is doubly-stochastic: the entries of each row
and column of Λ sum to one.

Using the above formula for individual channel loads, the chan-
nel closest to its saturation point defines the normalized maximum
channel load:

γmax(R, Λ) = max
c∈C

[
γc(R, Λ)

bc

]
. (3)

This maximum channel load then defines the throughput Θ(R, Λ)
of the network under the traffic pattern:

Θ(R, Λ) = γmax(R, Λ)−1. (4)

So, for example, if Θ(R, Λ) = 0.5, each node in the network can
send and receive packets at up 50% of their maximum bandwidth
under the traffic pattern Λ without saturating a channel.

It is important to note that both measures of channel load, γc and
γmax, are convex in R. This is obviously the case for γc since it
is linear in R. Because taking the point-wise maximum of a set of
convex functions is convex [9], it follows that γmax is also convex.

Although the paper focuses on the throughput properties of rout-
ing algorithms, another important metric is locality. The locality
of an algorithm is expressed as the distance a packet travels on
average, which largely determines end-to-end delay of packets at
low load2 and influences other performance metrics such as average
power dissipated by a network. Increasing locality, or equivalently
reducing the average packet distance, can also have a positive affect
on average-case throughput (Section 5.4). We define average path

2The other key factor in the latency of packets at low loads is seri-
alization latency — the time required to inject a wide packet into a
narrower channel.

length Havg over all traffic patterns as

Havg(R) =
1

|N |2
∑
s,d

∑
p∈Ps,d

len(p)R(p), (5)

where len(p) is the length of path p through the network. It is often
useful to normalize average path length and this can be accom-
plished by expressing the average path length as a fraction of the
minimal path length, defined by the average length of the shortest
paths between each source-destination pair.

3. COST FUNCTIONS
Given the basic routing algorithm design problem and metrics

developed in the previous sections, we introduce three throughput-
centric cost functions. The capacityof a network is presented first
as a useful quantity for normalizing throughput results. Then our
two new cost functions, worst-case and average-case throughput,
are presented along with their linear formulations.

3.1 Capacity
Using the above definition of throughput, the capacityof a net-

work is defined as its maximum throughput under the uniform traf-
fic pattern U .3 The capacity of a network can be found by solving
the convex optimization problem

minimize CU (R) = γmax(R, U)

subject to
∑

p∈Ps,d
R(p) = 1, ∀s, d ∈ N

R(p) ≥ 0, ∀p ∈ P.

(6)

The result of the optimization is the minimum channel load under
uniform traffic and a routing algorithm that realizes this load. Of
course, the maximum throughput (capacity) is simply γmax(R, U)−1.
Expressing the throughput of other traffic patterns Λ as a fraction
of capacity, Θ(R, Λ)/Θ(R, U), allows a meaningful comparison
of throughputs between different networks.

3.2 Worst-case Throughput
Worst-case throughput is an important metric for applications of

interconnection networks which must maintain throughput levels
under adversarial traffic. As described in this section, designing al-
gorithms that have optimal worst-case throughput can be expressed
as a linear program.

The worst-case throughput of a network is defined as its mini-
mum throughput over all traffic patterns. As shown in [11], it is
sufficient to limit the search for worst-case traffic patterns to per-
mutations, so

Cwc(R) = γwc(R) = max
π∈Π

γmax(R, π), (7)

where Π is the set of all permutation matrices. Then the worst-
case throughput is Θwc(R) = γwc(R)−1. Maximum channel load
is convex in R and because the point-wise maximum over several
convex function preserves convexity, the worst-case channel load is
also convex in R. Therefore, designing routing algorithms to max-
imize worst-case throughput can be formulated as a convex opti-
mization problem as in the capacity case.

By introducing variables u, v, and w and several new constraints,
the convex formulation of the worst-case routing problem can be
converted to a linear program. The details of this reformulation are

3Under the uniform traffic pattern U , each source sends to each
destination with equal probability (us,d = 1/N ).



presented in the Appendix. The resulting linear program is:

minimize w

subject to
∑

p∈Ps,d
R(p) = 1, ∀s, d ∈ N

R(p) ≥ 0, ∀p ∈ P∑
p:c∈p,
p∈Ps,d

R(p) ≤ vd,c − us,c, ∀s, d ∈ N, c ∈ C∑
d∈N vd,c −

∑
s∈N us,c = bcw, ∀c ∈ C.

(8)
The LP keeps the same basic form as the previous MCF problems
and still includes the flow constraints.

The new variables and constraints are directly related to dual of
the maximum-weight matching problem [7][12]. Because chan-
nel loading is linear, γc(R, π) can be interpreted as the weight of
a matching π in a bipartite graph whose edge weights are deter-
mined by R [11]. Each channel c has dual variables us,c associated
with each source and dual variables associated with each destina-
tion vd,c. These dual variables are often called potentialsin the
context of minimum cost flows. Minimizing the sum of potential
differences between the sources and destinations, the fourth con-
straint of (8), gives a maximum weight matching. The resulting
value of γwc(R) is stored in the variable w.

3.3 Average-case Throughput
Rather than ensuring a maximum worst-case throughput, sys-

tems may seek to maximize the average-case throughput of the
network. As in worst-case throughput, it would be natural to de-
fine the average-case throughput of a routing algorithm as its av-
erage throughput over all traffic matrices, which in this case, cor-
responds to an integral over the space of all doubly-stochastic ma-
trices. Unfortunately, even the volume of this space is difficult to
evaluate [13]. Moreover, any integral or sum of the throughput
over a restricted set or random sampling of traffic patterns, is nei-
ther convex nor concave in the routing function. To get a tractable
definition for the average-case throughput, several approximations
are necessary.4

Since channel load is convex in R and any sum of convex func-
tions is also convex, the average throughput can be approximated
as the reciprocal of the average maximum channel load. Therefore,
our cost function for average-case channel load is

Cavg(R) = γavg(R) ≈ 1

|X|
∑
Λ∈X

γmax(R, Λ), (9)

where X ⊆ S is a random, finite subset of traffic matrices. In addi-
tion to the random sampling, the harmonic mean of channel loads
implied by averaging throughputs is replaced with an arithmetic
mean. As in the worst-case throughput, the optimization prob-
lem can be formulated to minimize the average maximum channel
load, which is convex in R. Then the maximum average through-
put is approximately the reciprocal the average maximum channel
load. In practice, this approximation works well. For example, with
|X| = 100 and N = 64, the approximate expression is within 5%
of the original expression for average throughput for each of the
routing algorithms used in the later sections of this paper.

4Throughput is quasi-concave in R, which could be exploited in
optimizing for throughput. However, since calculating the average-
case throughput requires approximation regardless, we adopt a
good, linear approximation of throughput that results in simpler
optimization problems.

4. COMPLEXITY AND SYMMETRY
It may appear that the number of variables in the MCF prob-

lems must be exponential in the size of the network because the
number of paths through a network grows exponentially. How-
ever, it is well-known that instead of tracking the probability of
individual flows through the network, it is sufficient to only know
the total probability of all paths crossing each channel in the net-
work (see [7], page 665). In this formulation, a single flow vari-
able is assigned to each channel for each commodity. Since the
routing algorithm design problems contain a commodity for each
source-destination pair, this requires CN2 variables and CN2 non-
negativity constraints. The flow constraints are also reformulated
to express the conservation of total flow at each node: the flow in-
jected plus the flow entering a node must equal the flow ejected
and leaving a node. This requires a constraint at each node for
each commodity or N3 constraints for routing algorithm design.
The linear programming formulation of the worst-case throughput
problem requires O(CN2) additional constraints and the average-
case throughput problem requires O(C|X|) additional constraints,
where |X| is the size of the random sample of traffic matrices.
Therefore, both the number of constraints and variables in the MCF
problems can be made polynomial in the network size. Also, given
the flow variables from a solution of the reformulated problem,
paths can easily be recovered.

Despite their polynomial-size, the complexity of these optimiza-
tion problems can quickly grow too large to be practically solved.
For the LP’s considered in this paper, a general purpose linear pro-
gramming package is experimentally limited to a few million non-
zero terms before memory requirements or solution times become
prohibitive. This complexity can be greatly reduced by taking ad-
vantage of symmetry. Moreover, the validity of these symmetry
reductions is a direct result of the fact that our cost functions are
convex.

For example, if the network’s topology is vertex-symmetric, it
is sufficient to limit the search for optimal routing algorithms to
those that can be described based on the relative position of the
source and destination nodes. That is, R(p) is only computed for
all paths from a single, canonical source node to each destination.
Then other values of R(p) are found by mapping from an arbitrary
source-destination pair to the canonical source using an automor-
phism defined by the vertex-symmetry of the topology. The re-
sult of exploiting this symmetry is the number of variables required
to describe the routing algorithm is reduced by N to N2 and the
number of constraints is reduced to CN . A similar optimization
for edge-symmetric topologies yields a reduction in the number of
worst-case throughput constraints to O(CN).

5. ROUTING IN TORI
In this section, the metrics and optimization techniques devel-

oped over the previous sections are applied to routing algorithm
design on k-ary 2-cube (2-dimensional tori) topologies (Figure 2).
Low dimensional tori are popular in implementations and many
routing algorithms have been previously proposed for these topolo-
gies.

An initial set of optimization problems explore the tradeoff be-
tween locality and worst-case performance of oblivious routing al-
gorithms. While dimension-order routing achieves an optimal worst-
case for minimal algorithms, the non-minimal algorithms studied
lie far from the optimal tradeoff curve. Motivated by this observa-
tion, two new routing algorithms are developed. Both algorithms
have simple descriptions and practical, deadlock-free implementa-
tions and both greatly improve the locality of routing algorithms
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Figure 2: The k-ary 2-cube (2-dimensional torus) topology.

that achieve the maximum worst-case throughput. These new al-
gorithms combined with dimension-order routing cover the ends of
the optimal tradeoff curve, but we also show that an interpolation
between these extreme points creates a set of routing algorithms
that trade locality for worst-case throughput and lie within 20% of
the optimal tradeoff curve — far better than existing algorithms.
A study of the tradeoffs in average-case throughput versus locality
reveals a similar trend to the worst-case tradeoff, but less locality
must be sacrificed. More importantly is that the two near-optimal
worst-case algorithms we developed have near-optimal average-
case throughputs as well. This reveals an interesting result for
tori: there is virtually no tradeoff between worst-case and average-
case throughput. Finally, we comment on the performance of these
oblivious routing algorithms relative to adaptive routing algorithms.

All routing algorithm design problems presented in the following
sections are formulated as linear programs and solved with ILOG’s
CPLEX LP solver [14]. Because the torus is both edge- and vertex-
symmetric, the overall problem size is reduced to O(CN).

5.1 Locality versus Worst-case Throughput
The first tradeoff we consider for oblivious routing algorithm de-

sign is how optimizing for the worst-case affects the average dis-
tance a packet travels. From [15][16][17][18], a general trend is
known for tori and other networks — greedy, oblivious algorithms
that attempt to maximize locality suffer from poor worst-case per-
formance. This trend can be quantified as a tradeoff by solving a
series of routing algorithm design problems: for a particular aver-
age path length L, what is the best worst-case throughput that can
be achieved?

Restating problem this as a linear program gives

minimize Cwc(R)

subject to
∑

p∈Ps,d
R(p) = 1, ∀s, d ∈ N

R(p) ≥ 0, ∀p ∈ P
Havg(R) = L

(10)

This optimization problem follows the basic form given Section 2.2,
except for the additional linear constraint on the average distance a
packet travels Havg.

The result of solving a series of these optimization problems for a
range of locality constraints (L) on an 8-ary 2-cube is shown in Fig-

ure 1. The horizontal axis shows worst-case throughput normalized
to the capacity of the network. Average path length is shown on the
vertical axis normalized to the minimal path length. Algorithms
that achieve an optimal tradeoff between worst-case throughput and
locality are shown as the solid line and the set of all feasible routing
algorithms is shown in gray.

In addition to the tradeoff curve, several existing routing algo-
rithms are also plotted in the tradeoff space of Figure 1. The details
of the routing algorithms are described in Table 1. Both dimension-
order routing (DOR) and ROMM are minimal algorithms and there-
fore have normalized average path lengths of one. As shown, DOR
falls at one extreme of the Pareto optimal portion of the tradeoff
curve, thus DOR has the best possible worst-case of any mini-
mal routing algorithm in the 8-ary 2-cube. At the other extreme,
Valiant’s randomized algorithm (VAL) achieves the best possible
worst-case, but requires path lengths that are twice the minimal
distance. The RLB and RLBth both trade some locality for better
worst-case performance. However, VAL, RLB, and RLBth all lie
far from the optimal tradeoff curve.

5.2 Worst-case Optimal Routing
Although dimension-order routing achieves the optimal worst-

case throughput for a minimal routing algorithm, the tradeoff space
demonstrated an obvious lack of any routing algorithm that maxi-
mized locality while achieving the maximum worst-case through-
put (50% of capacity). In this section, we develop two routing al-
gorithms that approach this worst-case optimal point.

First, it is important to realize that although routing algorithms
exist at each point in the feasible region of the worst-case versus lo-
cality space, these routing algorithms do not necessarily have sim-
ple closed formed descriptions. This appears to be the case for the
worst-case optimal point in the 8-ary 2-cube. However, algorithms
with simple descriptions do get within a small factor of the optimal
performance.

The first algorithm we introduce is an optimized variant of Valiant’s
algorithm. For the torus, each phase of Valiant’s algorithm routes
minimally between any two nodes. Because of the randomization
of the intermediate node, load is exactly balanced, but at a cost of
a path length that is twice minimal. However, many choices of the
minimal routing algorithms used in the two phases of Valiant result
in some paths that revisit a node. An example of this is shown in
Figure 3, where dimension order routing is used for both phases of
the algorithm. As illustrated, a “loop” in the path results in extra
distance traveled by the packet. Removing this loop from the path
would reduce path length while maintaining the optimal worst-case
— removing the loop only reduces the channel loads, therefore the
worst-case throughput cannot drop. Another important observation
is that the minimal routing algorithms used in each of the phases
may be different as long as they both realize the capacity of the
network under uniform traffic. This leads to a simple observation:
the routing algorithms for the phases can be chosen to increase the
number of loops that appear in the paths of packets. Since the loops
can be safely removed from the paths, increasing the number of
loops reduces the average distance a packet travels. Our improved
version of Valiant’s algorithm (IVAL) implements these ideas.

IVAL works similarly to VAL, but with a much reduced aver-
age path length. As in VAL, routing a packet in IVAL begins with
choosing a random intermediate node. Then dimension order rout-
ing is used to create a path from the source to the intermediate.
The second phase of the algorithm also uses DOR, but reversesthe
order of dimension traversal. So, for example, if the first phase
routed in the X dimension followed by the Y dimension, the sec-
ond phase routes in Y followed by X. This simple reversal of di-



Table 1: Summary of routing algorithms
DOR Dimension-order routing [4]. Packets are routed minimally in the X dimension first, then in Y. If either direction

is minimal in a dimension, routes are split evenly between both directions.
VAL Valiant’s routing algorithm [3]. In the first phase, packets are routing from the source to a randomly chosen

intermediate node using a minimal routing algorithm (e.g. DOR). The second phase routes minimally from the
intermediate to the destination.

ROMM ROMM [19]. A two-phase algorithm that uses DOR for both phases, like Valiant’s, but routes are kept minimal
by always choosing the intermediate from the minimal quadrant.

RLB Randomized local balance [18]. Another two-phase algorithm where the intermediate is chosen so that minimal
routing occurs in the X dimension with probability (k−∆X)/k, where ∆X is the minimum distance in X that
must be traveled and minimal routing occurs in Y with probability (k −∆Y )/k. DOR is used for both phases.

RLBth RLB threshold [18]. A modification of RLB where a packet is always routed minimally in X if ∆X < k/4 and
minimally in Y if ∆Y < k/4.

d

is

Figure 3: An example of a loop in a path used by Valiant’s
routing algorithm on a portion of a torus network. X first
dimension-order routing is used from the source s to intermedi-
ate i and then from the intermediate to the destination d (path
shown as solid). A more efficient dotted path removes the loop
in the solid path and reduces path length without decreasing
throughput.

mension order between the phases greatly increases the chances of
loops being formed in the path. Of course, these loops are removed
before packet routing begins. Taking the average over all paths
shows that IVAL has a average path length of about 1.61 times min-
imal compared to the two times minimal paths required in Valiant
— an almost 20% reduction in the average path length (Figure 1).
IVAL can also be made deadlock free with a modest number of vir-
tual channels: one set of virtual channels is used for each of the
two phases of the algorithm and two virtual channels are required
to break intra-dimension deadlocks within the phases, as in [20].
Therefore IVAL requires a total of four virtual channels per physi-
cal channel to avoid deadlock, the same as VAL.

Although IVAL has a simple closed-form (algorithmic) descrip-
tion and improves significantly over Valiant’s algorithm, its average
path length is still about 9.1% above the optimal point of just be-
low 1.48 times minimal. Of course, there may exist other simple
algorithms that lie within this gap, however the gap can also be re-
duced if the designer is willing to abandon a purely closed-form
description of the routing algorithm. We introduce such an algo-
rithm, called 2TURN, that does just that.

Instead of requiring that the routing algorithm have a closed-
form description, the 2TURN algorithm only uses a closed-form

description of the possible paths a packet may take through the
network. As its name implies, 2TURN allows any path through
the network which contains at most two turns. A turn is defined
as any change from routing in one dimension to the other. Also,
“u-turns” or changes of direction within dimensions are disallowed
in the 2TURN algorithm. Since every path in IVAL also has at
most two turns, 2TURN contains all the paths considered by IVAL.
2TURN can also use paths not available to IVAL. For example,
IVAL always routes minimally after its final turn, but 2TURN has
the option to route non-minimally.

Then, any path p with at most two turns R(p) ≥ 0 and for
any path q outside this set R(q) = 0. These linear constraints
can easily be incorporated into the optimization problem to find an
optimal weighting of the paths. Since the paths of 2TURN are a
superset of those of IVAL, 2TURN can match IVAL’s worst-case
performance of half of capacity. At the same time, the average path
length of 2TURN is reduced to approximately 1.48 times minimal,
only 0.36% more than the optimal algorithm (Figure 1). The key
advantage of 2TURN over the optimal algorithm is the fact that
its paths can be described in simple terms, allowing simple dead-
lock analysis: 2TURN can be made deadlock free by incrementing
a packet’s virtual channel set after each turn from the Y to the X
dimension. Because any two turn path has at most one Y to X
turn, this approach requires two virtual channel sets. Again, intra-
dimension deadlock requires two virtual channels, so 2TURN can
also be made deadlock-free with four virtual channels per physical
channel.

A further comparison of the locality of the IVAL and 2TURN
algorithms versus the network radix k for several k-ary 2-cubes is
shown in Figure 4. The optimal locality is also plotted for compar-
ison. The figure reveals a significant variation in locality between
odd and even radices for both the optimal and 2TURN routing al-
gorithms. In the even cases, the difference between the optimal and
IVAL is maximized and 2TURN provides the most benefit. For
the k = 4 and k = 6 cases, 2TURN exactly matches the optimal.
The variations and gap between optimal and IVAL both continue to
decrease as the radix increases with IVAL settling to roughly 1.64
times minimal and optimal oscillating around approximately 1.52
times minimal.

5.3 Interpolated Routing Algorithms
In the previous sections we focused on the extreme points of the

worst-case versus locality tradeoff curve, but there still exists a sig-
nificant gap between these extreme points in the worst-case tradeoff
space. This section, we introduce interpolated routing algorithms
to fill this gap and provide a continuum of routing algorithms.
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Figure 4: The average path length for several routing algo-
rithms (IVAL and 2TURN) with optimal worst-case perfor-
mance on different size k-ary 2-cubes. The optimal local-
ity found by solving the corresponding MCF problem is also
shown.

Since oblivious routing algorithms can be captured in terms of a
probability distribution over all paths, two existing algorithms R1

and R2 can be combined to create a new algorithm R′:

R′(p) = αR1(p) + (1 − α)R2(p), ∀p ∈ P, (11)

where 0 ≤ α ≤ 1. It can be easily verified that
∑

p∈Ps,d
R′(p) =

1 for all source-destination pairs and therefore R′ is a valid routing
algorithm. The interpolation factor α controls the relative influence
of R1 and R2 on R′. Intuitively, as α sweeps from one to zero, the
properties of R′ transition from those of R1 to those of R2.

Quantitatively, the interpolated routing function has an average
path length of

Havg(R
′) = αHavg(R1) + (1 − α)Havg(R2). (12)

The worst-case channel load of the interpolated function can also
be calculated using the convexity of channel load:

γwc(R
′) ≤ αγwc(R1) + (1 − α)γwc(R2). (13)

Rewriting using throughputs, the worst-case of the interpolated func-
tion is a weighted harmonic mean:

Θwc(R
′) ≥

(
α

Θwc(R1)
+

(1 − α)

Θwc(R2)

)−1

. (14)

Using these ideas, interpolated routing algorithms can be used
to generate a tradeoff between two routing algorithms situated at
different points in the worst-case versus locality space. For ex-
ample, in the 8-ary 2-cube example from the previous section, an
interpolation between DOR and IVAL can realize any routing algo-
rithm along the dashed curve shown in Figure 5. Each point in the
curve corresponds to a different value of α used in the interpolation.
For this example, it also happens that the worst-case throughput of
the interpolated routing algorithms is exactly equal to the lower
bound derived above.5 Similarly, an interpolation between DOR
5Since DOR and IVAL share a worst-case traffic permutation, the
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Figure 5: The performance of two interpolated routing algo-
rithms in the tradeoff space between locality and worst-case
throughput. The set of algorithms produced by interpolating
between DOR and IVAL is shown as a dashed line and the al-
gorithm produced by interpolating between DOR and 2TURN
is shown as a dotted line.

and 2TURN is shown as a dotted line in the figure.
The interpolated algorithms between DOR and IVAL are at most

17% above the optimal locality with the maximum percent differ-
ence occurring about 65% of the way between DOR and IVAL. At
the same worst-case throughput as RLB, the interpolated algorithm
gives a roughly 14% reduction in path length. Also, the reduction
in path length over RLBth is about 12%. Interpolating between
DOR and 2TURN only improves the performances, with the set of
interpolated algorithms at most 10% above the optimal locality and
a 19% and 15% improvement over RLB and RLBth, respectively.

The algorithms produced from both algorithms are also simple to
implement. To interpolate between IVAL and DOR, for example,
a packet is routed using IVAL with probability α and using DOR
with probability 1 − α. Also, since DOR produces paths that are
a subset of the paths produced by IVAL and 2TURN, no additional
virtual channels are required to avoid deadlock.

5.4 Average-case Throughput
As in the worst-case, the tradeoff between average-case through-

put and locality can be found by solving the following linear pro-
gram at different values for the average packet distance L:

minimize Cavg(R)

subject to
∑

p∈Ps,d
R(p) = 1, ∀s, d ∈ N

R(p) ≥ 0, ∀p ∈ P
Havg(R) = L

(15)

The average case throughput is approximated using a sample of 100
random traffic matrices as described in Section 3.3 (|X| = 100).

The resulting optimal tradeoff curve is plotted in Figure 6 and

actual worst-case throughput of the interpolated routing algorithm
is equal to the bound. This is true when interpolating between any
routing algorithms that share a common worst-case permutation.
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Figure 6: Tradeoff between average path length (vertical axis)
and average-case throughput (horizontal axis) on the 8-ary 2-
cube. The optimal tradeoff is shown as a solid line and the
region of feasible routing algorithms is gray. The performance
of several routing algorithms are also shown as points in the
tradeoff space.

the region of feasible routing algorithms is shown as gray. The
tradeoff shows a similar trend to the worst-case and achieving a
higher average throughput requires a sacrifice of locality.

Previously existing algorithms generally lie far from the opti-
mal tradeoff, with VAL offering the best average-case through-
put at 50% of capacity. Computing the average throughput of the
two new routing algorithms developed for the worst-case in Sec-
tion 5.2, IVAL and 2TURN, reveals that they are both much closer
to the maximum average-case throughput: IVAL is within 8.4%
and 2TURN is within 6.4%. This also demonstrates that there is
a weak tradeoff between worst-case and average-case throughput
in the 8-ary 2-cube and that routing algorithms can be designed to
have bothgood worst-case and good average-case throughput.

Adapting the approach used to develop the 2TURN algorithm
for the worst-case, a similar algorithm 2TURNA can be designed
for the average-case. 2TURNA allows all paths with at most two
turns and the probabilities for each path are found by first opti-
mizing for maximum average-case throughput, then for maximiz-
ing locality. The resulting algorithm’s performance is also plotted
in Figure 6. As shown, 2TURNA has an average-case throughput
within 4.6% of the maximum of approximately 62.8% of capacity.
2TURNA also increases locality over IVAL and 2TURN, sitting
roughly 16% above the optimal tradeoff curve in terms of aver-
age path length. Performing the same optimization as in 2TURNA,
but limiting the paths to also be minimal, produces a routing algo-
rithm that matches the performance of ROMM. Therefore, ROMM
exhibits good average-case throughput over the space of simple,
minimal routing algorithms.

5.5 Comments on Adaptive Routing
To this point in the paper, we have assumed all of our routing

algorithms are oblivious and therefore do not incorporate network
state into their routing decisions. Considering the torus, adaptiv-

ity offers no advantage in terms of worst-case throughput as shown
in [21]. However, adaptivity can potentially increase locality for
a given worst-case. For example, the GOAL algorithm [21] has
an average path length of approximately 1.3 times minimal and
has an experimental worst-case throughput of half of capacity.6 In
the average case, minimal adaptive algorithms can offer an aver-
age throughput of about 60%, roughly the same as 2TURNA, but
without the sacrifice in locality [21]. However, the gains in locality
offered by any adaptive algorithm could be offset by its loses due
to increased per-hop latency to dynamically compute routes.

6. RELATED WORK
Many different routing algorithm design problems have been cast

as multicommodity flows (MCFs) and, more specifically, our def-
inition of throughput is consistent with maximum concurrent flow
problems [22]. A good overview of routing algorithm design us-
ing MCFs is given by Bertsekas and Gallager [8], while Ahuja et
al. [7] give a more general treatment of MCFs. One of the first MCF
formulations of the routing algorithm design problem is given by
Fratta et al. [23] where the cost function approximates the queuing
delay of a particular routing algorithm. Other early work by Ros
Peran [24] uses maximum channel load as a cost function. The
work presented in the paper introduces two new cost functions,
worst-case and average-case throughput. The convexity of worst-
case channel load ensures that globally optimal solutions to worst-
case routing problems can be efficiently found. While the average-
case must be approximated, a simple expression yields a good esti-
mate and efficient problem formulation. Additionally, a shortcom-
ing of previous cost functions is that an input traffic pattern must
be provided. However, this is not practical or even possible in most
interconnection network applications. The cost functions used in
this work address this problem by optimizing performance over all
traffic patterns.

Another set of network problems closely related to throughput-
centric routing algorithm design are those considered in adversarial
queuing theory [25]. Notably, Andrews et al. [26] show an on-line
routing algorithm that finds feasible paths for packets through a net-
work subject to capacity constraints if any feasible solution exists.
Although similar to the worst-case throughput problem considered
in this paper, these results also incorporate delay bounds for the
packets through the network. However, the routing algorithm re-
quires solving a shortest-path problem for each packet routed and
is well beyond the complexity and latency requirements of almost
any interconnection network router. Instead, we focus on oblivious
routing algorithms, which have simple hardware implementations.

In virtual-circuit routing, Awerbuch et al. [27] considers through-
put competitive algorithms. As our in work, throughput is defined
by the maximum channel load. An on-line approximation algo-
rithm is shown to give provably good competitive ratios, but again
the algorithm is too complex to consider for implementation in a
typical interconnection network. More recently, Räcke [28] ad-
dresses a similar problem and develops an oblivious routing algo-
rithm that is throughput competitive with oblivious routing within a
polylogarithmic factor. This theoretical observation on the “power”
of oblivious routing is consistent with the experimental results pre-
sented in this paper.

6There is no known method for determining the exact worst-case
throughput for a general adaptive routing algorithm.



7. CONCLUSIONS
As shown in this paper, throughput-centric routing algorithm de-

sign can be cast in terms of a linear program. Globally optimal
solutions to these optimization problems can then be found effi-
ciently. The result is that we can generate optimal oblivious rout-
ing algorithms. Also, the tradeoffs considered in their design can
be precisely quantified.

Applying these techniques to k-ary 2-cube topologies produced
many interesting results. First, existing algorithms sacrifice too
much locality to achieve maximum worst-case throughput. This
motivated the development of the IVAL and 2TURN routing al-
gorithms, which achieve near-optimal locality while maintaining
maximum worst-case throughput. Both algorithms have practical,
deadlock-free implementations. Then, interpolated routing was in-
troduced and by interpolating between 2TURN and DOR, a set of
routing algorithms that was within 10% of any point of the optimal
tradeoff were created. Finally, analysis of average-case throughput
showed that existing algorithms had far from optimal average-case
throughput. However, the IVAL and 2TURN algorithms developed
for the worst-case also performed well in the average-case. This
revealed the weak tradeoff between worst-case and average-case
throughput in the 2-dimensional torus.

Future work includes application of the methods developed in
this paper to larger networks and different topologies. Efficient
algorithms for multicommodity flow have received much attention
in recent years and adapting either efficient exact methods [29] or
approximation algorithms [30][31] could significantly extend the
practical application space of our methods.

APPENDIX
As described in Section 3.2, the problem of designing a routing al-
gorithm with optimal worst-case performance can be expressed as
a linear program by reformulating the original problem statement
using a convex cost function. The first step of this reformulation
replaces the maximum channel load γwc(R) with multiple inequal-
ities, one for each channel and permutation matrix. A new variable
w is introduced to store the replaced value of γwc(R):

minimize w

subject to
∑

p∈Ps,d
R(p) = 1, ∀s, d ∈ N

R(p) ≥ 0, ∀p ∈ P
γc(R, π)/bc ≤ w, ∀c ∈ C, π ∈ Π.

(16)

Since γc(R, π)/bc = γwc(R) for some channel c and permutation
π, w ≥ γwc(R). This inequality is reduced to an equality by the
minimization problem, so this problem is equivalent to the original
convex formulation. Although (16) is a linear program, it is not
practical because of the exponential number of constraints. To re-
duce the number of constraints, the dual optimization problem is
considered.

The Lagrange dual function corresponding to (16) is

g(q, r, t) = inf
R,w

{
w +

∑
s,d∈N

∑
p∈Ps,d

qs,d (R(p) − 1)

−
∑
p∈P

rpR(p) +
∑
c∈C

N !∑
i=1

tc,i [γc(R, π(i))/bc − w]

}
,

where rs,d ≥ 0, π(i) is the ith of the N ! permutation matrices.
Focusing on the summation over t, the definition of γc is substi-

tuted to give:

∑
c∈C

1

bc

∑
s,d∈N

∑
p:c∈p,
p∈Ps,d

R(p)

N !∑
i=1

tc,iπ(i)s,d − w
∑
c∈C

N !∑
i=1

tc,i (17)

The innermost term of the left group of sums represents a weighted
combination of permutations matrices and by the result of Birkhoff [32]
this can be represented by a scaled doubly-stochastic matrix. Since
there are C such sums, let Ac be a doubly-stochastic matrix with
row and column sums of φc. Then,

N !∑
i=1

tc,iπ(i)s,d = ac
s,d. (18)

Using this simplification, the problem of maximizing the dual func-
tion is rewritten as a linear program with a polynomial number of
variables and constraints:

maximize −∑
s,d∈N rs,d

subject to rs,d +
∑

c∈p ac
s,d/bc ≥ 0 ∀s, d ∈ N, p ∈ Ps,d∑

s∈N ac
s,d = φc, ∀d ∈ N, c ∈ C∑

d∈N ac
s,d = φc, ∀s ∈ N, c ∈ C∑

c∈C φc = 1, ∀c ∈ C
ac

s,d ≥ 0, ∀s, d ∈ N, c ∈ C.
(19)

Taking the dual of this linear program yields the primal linear pro-
gram presented in Section 3.2.

The dual also has an interesting interpretation that could be use-
ful in developing approximation algorithms for the optimal worst-
case routing design problem. In the primal problem, designing a
good worst-case algorithm corresponds to selecting appropriates
paths through the network and assigning them probabilities — any
heuristic for picking the paths and their probabilities gives an ap-
proximation to the optimal algorithm. The dual has a similar in-
terpretation, but instead of picking paths, a good dual routing se-
lects permutation traffic patterns that would induce the worst-case
channel load in the optimal routing algorithm. The weighted sum
of these permutations form the A matrices in the dual optimiza-
tion problem. Again, any heuristic for selecting these permutations
gives an approximation algorithm.
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