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ABSTRACT
We introduce Randomized Local Balance (RLB), a routing
algorithm that strikes a balance between locality and load
balance in torus networks, and analyze RLB’s performance
for benign and adversarial traffic permutations. Our re-
sults show that RLB outperforms deterministic algorithms
(25% more bandwidth than Dimension Order Routing) and
minimal oblivious algorithms (50% more bandwidth than
2 phase ROMM [9]) on worst-case traffic. At the same
time, RLB offers higher throughput on local traffic than a
fully randomized algorithm (4.6 times more bandwidth than
VAL (Valiant’s algorithm) [15] in the best case). RLBth
(RLB threshold) improves the locality of RLB to match the
throughput of minimal algorithms on very local traffic in
exchange for a 4% reduction in worst-case throughput com-
pared to RLB. Both RLB and RLBth give better through-
put than all other algorithms we tested on randomly se-
lected traffic permutations. While RLB algorithms have
somewhat lower guaranteed bandwidth than VAL they have
much lower latency at low offered loads (upto 3.65 times less
for RLBth).

Categories and Subject Descriptors
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ity]: Nonnumerical Algorithms and Problems—Routing and
Layout.; C.1.2 [Processor Architectures]: Multiple Data
Stream Architectures—Interconnection architectures.
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1. INTRODUCTION
Interconnection networks based on a torus or k-ary n-

cube topology [3] are widely used as switch and router fab-
rics [4], for processor-memory interconnect [12], and for I/O
interconnect [10]. In many of these applications, it is essen-
tial that the interconnection network guarantee a minimal
throughput regardless of the traffic pattern. In an Internet
router, for example, there is no backpressure on input chan-
nels so the interconnection network used for the router fabric
must handle any traffic pattern at line rate or packets will
be dropped. At the same time, an efficient interconnection
network should exploit locality to achieve high-performance
and low power on local traffic patterns.

A routing algorithm must strike a balance between these
conflicting goals of exploiting locality and providing high
worst-case throughput. To achieve high-performance on lo-
cal traffic, minimal routing algorithms - that choose a short-
est path for each packet - are favored. Minimal algorithms,
however, perform poorly on worst-case traffic due to load im-
balance. With a minimal routing algorithm, an adversarial
traffic pattern can load some links very heavily while leaving
others idle. To improve performance under worst-case traf-
fic, a routing algorithm must balance load by sending some
fraction of traffic over non-minimal paths - hence destroy-
ing some of the locality. Existing randomized routing algo-
rithms based on Valiant’s work [15] give good performance
on worst-case traffic, but at the expense of completely de-
stroying locality and hence giving very poor performance on
local traffic.

In this paper, we introduce Randomized Local Balance
(RLB) - a randomized oblivious routing algorithm for torus
networks that strikes a balance between the conflicting goals
of locality and load balance. Like Valiant’s algorithm, RLB
works by routing each packet to its destination by way of
a randomly chosen intermediate node, q. However, to pre-
serve locality, q is chosen so that for each dimension more
traffic traverses the short direction than travels the long way
around. To avoid certain adversarial patterns, RLB also
travels in only a single direction in each dimension - avoid-
ing backtracking - and selects the order in which dimensions



are traversed randomly.
Because RLB distributes traffic over a larger number of

links it gives considerably better performance than minimal
algorithms on worst-case traffic, providing 25% more band-
width than dimension-order routing (DOR) and 50% more
bandwidth than 2 phase ROMM [9] in the worst case. At
the same time, because RLB exploits locality in its choice of
an intermediate node, q, it outperforms a fully randomized
algorithm by a factor of 4.6 on nearest neighbor traffic.

We further improve the locality of RLB by introducing
a variant, RLB threshold (RLBth) that routes minimally
in a given dimension if the distance in that dimension is
less than a threshold. RLBth matches the performance of
minimal algorithms on traffic patterns where the distance
is below the threshold - providing 8 times the performance
of VAL on these patterns. This is achieved at the expense
of a modest 4% degradation in throughput on worst-case
patterns.

Both RLB and RLBth give better average throughput
on 106 random traffic permutations than VAL, DOR, or
ROMM. At the same time, measures of individual packet
latency show that RLB and RLBth provide this throughput
with significantly lower latency than VAL.

Measurements of the throughput of variations of RLB in-
dicate that most of its advantage is gained by its weighted
random choice of direction in each dimension. Routing a
fraction of the traffic the long way around each dimension
effectively balances load for many worst-case patterns. Ran-
domly choosing dimension order and picking a random inter-
mediate node provide smaller improvements in performance.

The remainder of this paper describes RLB algorithms
(RLB and RLBth) in more detail and evaluates their per-
formance. Section 3 describes the RLB algorithms in detail.
We measure the performance of RLB and RLBth in Sec-
tion 4 and compare them to existing routing algorithms.
Section 5 briefly describes previous randomized routing al-
gorithms and puts RLB in context with this work. In Sec-
tion 6, we discuss certain issues like packet reordering, dead-
lock and livelock.

2. PRELIMINARIES
The following discussions describe routing algorithms that

are oblivious. That is, they select a path from source to
destination that depends only on the source and destination
nodes in order to route a packet, ignoring the state of the
network. Oblivious algorithms may use randomization to
select among alternative paths. We restrict our discussion
to multi dimension torus networks or k-ary n-cube networks.
A k-ary n-cube is a n dimension torus network with k nodes
per dimension. Each link is unidirectional, so there are two
links between any adjacent nodes - one for each direction.

We further assume that the network uses store-and-forward
flow control with each node having buffers of infinite length.
Contention between packets for the same outgoing link in a
node is resolved using the oldest packet first protocol. Us-
ing this idealized model of flow control allows us to isolate
the effect of the routing algorithm from flow control issues.
The RLB algorithms can be applied to other flow control
methods such as virtual channel flow control.

The saturation throughput λ is always normalized to the
capacity of the network. The network capacity is the maxi-
mum load that the bisection of the network can sustain for
uniformly distributed traffic and is given by k

8
. All addition

and subtraction on node coordinates is performed mod k
yielding a result that is in the range [0, k − 1].

3. RANDOMIZED LOCAL BALANCE ROUT-
ING - RLB AND RLBTH

This section describes the randomized local balance rout-
ing algorithms - RLB and RLB threshold (RLBth). We
start by describing how to load balance a one-dimensional
ring and then extend this concept to higher dimension tori.

3.1 Balancing a 1-Dimensional Ring

7 6 5
4

3210

Figure 1: An 8 node ring (8-ary 1-cube).

To see why minimal routing is sub-optimal, consider a 8-
node ring (8-ary 1-cube) topology (Figure 1) in which node
i sends a message to node i + 3. We refer to this traffic
pattern as tornado traffic since with minimal routing the
messages all rotate around the ring in a single direction like
a tornado. As illustrated in Figure 2, with minimal routing,
the clockwise link out of node i carries three messages, from
i, i − 1, and i − 2. Hence, if the bandwidth of this link is
b, the per-node throughput of the network on this traffic
pattern is at most λ = b/3 = 0.33b.

0 1 2 3
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Figure 2: Minimally routed tornado traffic. Clock-
wise link load is 3. Counter clockwise link load is
0.

With this traffic pattern a minimal routing algorithm re-
sults in considerable load imbalance. All of the clockwise
links are fully loaded while all of the counterclockwise links
are idle.

We could ofcourse balance this traffic by randomizing the
routing, sending from node i to a random intermediate node
j and then from j to i + 3. Each of these two phases is a
perfectly random route and hence uses k/4 = 2 links on av-
erage for a total of 4 links traversed per packet. These links
are evenly divided between the clockwise and counterclock-
wise rings, two each. Thus, even though we are travers-
ing one more link on average than for minimal routing,
the per-node throughput for randomized routing is higher,
λ = b/2 = 0.5b.

The problem with purely randomized routing is that it
destroys locality. For a nearest-neighbor traffic pattern, in
which each node i sends half of its traffic to i+1 and half to
i − 1, throughput is still λ = 0.5b while a minimal routing
algorithm gives a throughput of λ = 2b on nearest-neighbor
traffic.



Now consider the tornado traffic pattern but with a non-
minimal routing algorithm that sends 5/8 of all messages in
the short direction around the ring - three hops clockwise -
and the remaining 3/8 of all messages in the long, counter-
clockwise direction (see Figure 3). Each link in the clockwise
direction carries 5/8 of the messages from 3 nodes for a total
of 15/8 messages. Similarly each link in the counterclock-
wise direction carries 3/8 of the messages from 5 nodes and
hence also carries a total of 15/8 messages. Thus, the traffic
is perfectly balanced - each link has identical load. As a
result of this load balance, the per-node throughput is in-
creased by 60% to λ = 8b/15 = 0.53b compared to that of a
minimal scheme.

0 1 2 3
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Figure 3: Non-minimally routing tornado traffic
based on locality. The dashed lines contribute a link
load of 3

8
while the solid lines contribute a link load

of 5
8
. All links equally loaded with load = 15

8
.

With randomized local balance (RLB) routing, if source
node s sends traffic to destination node d then the distance
in the short direction around the loop is ∆ = min(|s−d|, k−
|s − d|) and the direction of the short path is r = +1 if the
short path is clockwise, and r = −1 if the short path is
counterclockwise. To exactly balance the load due to sym-
metric traffic we send each packet in the short direction, r,
with probability Pr = k−∆

k
and in the long direction, −r,

with probability P−r = ∆
k

. This loads k−∆ channels in the
long direction with load P−r and ∆ channels in the short

direction with load Pr for a total load of ∆(k−∆)
k

in each
direction.

With nearest-neighbor traffic, for example, ∆ = 1, so
Pr = k−1

k
so for k = 8, 7/8 of the traffic traverses a single

link and 1/8 traverses seven links. On average each packet
traverses 14/8 = 1.75 channels - evenly distributed in the
two directions - and hence throughput is λ = 2b/1.75 =
1.14b.

This simple comparison in one dimension shows the ca-
pability of RLB to give good performance on an adversarial
traffic pattern. Here it achieves 0.53b on tornado traffic,
much better than the 0.33b of a minimal algorithm, and it
achieves 1.14b on nearest neighbor traffic, not as good as the
2b of a minimal algorithm, but much better than the 0.5b of
fully random routing.

In order to improve RLB’s performance on local traffic like
nearest neighbor, we can modify the probability function of
picking the short or long paths so that for very local traffic
RLB always routes minimally. Specifically, if ∆ < k

4
(the

average hop distance in a k node ring), then the message
must be routed minimally. Hence, Pr = 1 and P−r = 0
if ∆ < k

4
, else Pr is the same as that in RLB. We call

this modified version RLB threshold or RLBth. With this
modification, RLBth achieves a throughput of 2b on nearest
neighbor traffic while retaining a throughput of 0.53b on

tornado traffic pattern.

3.2 RLB Routing in Two or More Dimensions
In multiple dimensions RLB works, as in the one dimen-

sional case, by balancing load across multiple paths while
favoring shorter paths. Unlike the one dimensional case,
however, where there are just two possible paths for each
packet - one short and one long, there are many possible
paths for a packet in a multi-dimensional network. RLB
exploits this path diversity to balance load.

To extend RLB to multiple dimensions, we start by in-
dependently choosing a direction for each dimension just
as we did for the one-dimensional case above. Choosing
the directions selects the quadrant in which a packet will be
routed in a manner that balances load among the quadrants.
To distribute traffic over a large number of paths within
each quadrant, we route first from the source node s to a
randomly selected intermediate node q within the selected
quadrant and then from q to the destination d. For each
of these two phases we route in dimension order, traversing
all of one dimension before starting on the next dimension,
but randomly selecting the order in which the dimensions
are traversed.

First, lets look at how we select the quadrant to route in
by choosing a direction for each of the n dimensions in a k-
ary n-cube. Suppose the source node is s = {s1, s2, . . . , sn}
and the destination node is d = {d1, d2, . . . , dn}, where
xi is the coordinate of node x in dimension i. We com-
pute a distance vector ∆ = {∆1, ∆2, . . . , ∆n} where ∆i =
min(|si−di|, k−|si−di|). From the distance vector, we com-
pute a minimal direction vector r = {r1, r2, . . . , rn}, where
for each dimension i, we choose ri to be +1 if the short direc-
tion is clockwise (increasing node index) and -1 if the short
direction is counterclockwise (decreasing node index). Fi-
nally we compute an RLB direction vector r′ where for each
dimension i we choose r′i = ri with probability Pri = k−∆i

k

and r′i = −ri with probability 1 − Pri = ∆i
k

.
For example, suppose we are routing from s = (0, 0) to

d = (2, 3) in a 8-ary 2-cube network (8 × 8 2-D torus).
The distance vector is ∆ = (2, 3), the minimal direction
vector is r = (+1, +1), and the probability vector is P =
(0.75, 0.625). We have four choices for r′, (+1, +1), (+1,−1),
(−1, +1), and (−1,−1) which we choose with probabilities
0.469, 0.281, 0.156, and 0.094 respectively. Each of these
four directions describes a quadrant of the 2-D torus as
shown in Figure 4. The weighting of directions routes more
traffic in the minimal quadrant r′ = (+1, +1) and less in
the quadrant that takes the long path in both dimensions
r′ = (−1,−1). Moreover, this weighting of directions will
exactly balance the load for any traffic pattern in which
node s = (x, y) sends to node d = (x + ∆x, y + ∆y) - a 2-D
generalization of tornado traffic.

Once we have selected the quadrant we need to select a
path within the quadrant in a manner that balances the load
across the quadrant’s channels. There are a large number of
unique paths across a quadrant which is given by:

Np =

n−2∏
i=0

( ∑n−1
j=i ∆j

∆i

)
(1)

However, we do not need to randomly select among all of
these paths. To balance the load across the channels, it
suffices to randomly select an intermediate node q within
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Figure 4: Probability distribution of the location
of the intermediate node in RLB. (All nodes in a
similarly shaded region (quadrant) have equal prob-
ability of being picked.)

the quadrant and then to route first from s to q and then
from q to d. We then pick a random order of dimensions,
o, for our route where oi is the step during which the ith

dimension is traversed. We select this random ordering sep-
arately for both phases of routing. This is similar to the
two-phase approach taken by a completely randomized algo-
rithm. However, in this case the randomization is restricted
to the selected quadrant.

It is important that the packet not backtrack during the
second phase of the route, during which it is sent from q to
d. If minimal routing were employed for the second phase,
this could happen since the short path from q to d in one
or more dimensions may not be in the direction specified by
r′. To avoid backtracking, which unbalances the load, we
restrict the routing to travel in the directions specified by
r′ during both routing phases: from s to q and from q to
d. Figure 5 shows how the directions are fixed based on the
quadrant the intermediate node q lies in.

We need to randomly order the traversal of the dimen-
sions to avoid load imbalance between quadrant links, in
particular the links out of the source node and into the des-
tination. Figure 6 shows how traversing dimensions in a
fixed order (say x first, then y) leads to a large imbalance
between certain links.
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Figure 5: Example direction sets assigned to differ-
ent quadrants on an 8-ary 2 cube

Suppose in our example above, routing from (0,0) to (2,3)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

s

d

q

Figure 6: If one dimension (say x) is always tra-
versed before the other(say y), all the links are not
evenly balanced. Here, if q is in the boxed local
quadrant, then the upward link 13-9 will only be
used if q is one of nodes 9,5 or 1 while the right-
going link 13-14 is used if q is any of the other nodes
in the local quadrant. This, increases the likelihood
of using 13-14 over 13-9 thereby unnecessarily over-
loading 13-14 .

in an 8-ary 2-cube, we select the quadrant r′ = (−1, +1).
Thus, we are going in the negative direction in x and the
positive direction in y. We then randomly select qx from
[3, 4, 5, 6, 7, 0] and qy from [0, 1, 2]. Suppose this selection
yields intermediate point q = (7, 1). Finally we randomly
select an order o = (1, 2) for the 1st phase and also o = (1, 2)
for the 2nd phase (note that the two orderings could have
been different) implying that we will route in x first and
then in y in both phases. Putting our choice of direction,
intermediate node, and dimension order together gives the
final route as shown in Figure 7. Note that if backtracking
were permitted, a minimal router would choose the +x di-
rection after the first step since its only three hops in the
+x direction from q to d and five hops in the −x direction.

s

q

( 7 , 1 )

( 0 , 0 )

d

( 2 , 3 )

Figure 7: An example of routing using RLB.

Figure 8 shows how backtracking is avoided if directions
are fixed for both the phases. The dotted path shows the
path taken if Dimension Order Routing (traverse x dimen-
sion greedily, i.e. choosing the shortest path in that dimen-
sion and then traverse y dimension greedily) is followed in
each phase when going from s to q to d. Fixing the direction
sets based on the quadrant q is in, avoids the undesirable
backtracking as shown by the bold path.



Backtracking

s

d

q

Figure 8: Avoiding backtracking in the RLB scheme.
When the directions are fixed for both phases, rout-
ing is done along the bold path instead of the dotted
path.

Name Description

NN Nearest Neighbor - each node sends to one
of its four neighbors with probability 0.25
each.

UR Uniform Random - each node sends to a ran-
domly selected node.

BC Bit Complement - (x, y) sends to (k−x, k−
y).

TP Transpose - (x, y) sends to (y, x).

TOR Tornado - (x, y) sends to (x + k
2
− 1, y)

WC Worst-case - the permutation that gives the
lowest throughput by achieving the maxi-
mum load on a single link [1]

Table 1: Traffic patterns for evaluation of routing
algorithms

3.3 RLBth in Two or More Dimensions
As in the one dimension case, RLBth works the same as

RLB even for higher dimensions with a modification in the
probability function for choosing the quadrants. Specifically,
if ∆i < k

4
, then Pri = 1 and P−ri = 0, else Pri = k−∆i

k
and

P−ri = ∆i
k

. The threshold value of k
4

comes from the fact
that it is the average hop distance for a k node ring in each
dimension.

4. PERFORMANCE EVALUATION

4.1 Throughput of RLB on Various Traffic
We measure the saturation throughput of RLB on the

six traffic patterns described in Table 1. The first two pat-
terns are benign in the sense that they naturally balance
load and hence give good throughput with simple routing
algorithms. The next three patterns are adversarial pat-
terns that cause load imbalance. These patterns have been
used in the past to stress and evaluate routing algorithms.
Finally, the worst-case pattern is the traffic permutation (se-
lected over all possible permutations) that gives the lowest
throughput. In general, the worst-case pattern may be dif-
ferent for different routing algorithms.

The latency-throughput curve for each traffic pattern (ex-
cept NN) applied to an 8-ary 2-cube network with store and

forward flow control using RLB is shown in Figure 9 1. Each
curve starts at the y-axis at the zero load latency for that
traffic pattern which is determined entirely by the number of
hops required for the average packet and the packet length.
As offered traffic is increased latency increases because of
queueing due to contention for channels. Ultimately a point
is reached where the latency increases without bound. The
point where this occurs is the saturation throughput for the
traffic pattern, the maximum bandwidth that can be input
to each node of the network in steady state. The numerical
values of this saturation throughput for each traffic pattern
are given in Table 2.
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Figure 9: RLB delay-load curves for various traffic
patterns.

4.2 Effect of Backtracking
In describing RLB in Section 3 we saw qualitatively that

it was important to avoid backtracking during the second
phase of routing. Table 2 shows quantitatively how back-
tracking affects performance. The first column shows the
saturation throughput of RLB on each of the six traffic pat-
terns - the asymptotes of the curves in Figure 9. The second
column shows throughput on each traffic pattern using a
variation of RLB in which backtracking is permitted. With
this algorithm, after routing to intermediate node q, the
packet is routed over the shortest path to the destination,
not necessarily going in the same direction as indicated by
the dotted lines in Figure 8.

The table shows that backtracking improves performance
for the two benign cases but gives significantly lower perfor-
mance on tornado and worst-case traffic. The improvement
on benign traffic occurs because RLB with backtracking is
closer to minimal routing - its traversing fewer hops than
RLB without backtracking. The penalty paid for this is
poorer performance on traffic patterns like TOR that re-
quire non-minimal routing to balance load.

We discuss some other variations on RLB in Section 4.4.

4.3 Comparison to Other Routing Algorithms
In this section, we compare the performance of RLB and

1The NN curve is omitted to allow the throughput scale to
be compressed improving clarity.



Traffic RLB Backtrack

NN 2.33 2.9
UR 0.76 0.846
BC 0.421 0.421
TP 0.565 0.50

TOR 0.533 0.4
WC 0.313 0.27

Table 2: Saturation throughputs of RLB and its bac-
tracking variation.

Name Description

DOR Dimension-order routing [13] - route in the
minimal quadrant in x first, then in y.

ROMM Two-phase ROMM [9] - route to random
node q in minimal quadrant, then to desti-
nation.

VAL Valiant’s algorithm [15] - route to a random
node q anywhere in the network, then to
destination.

Table 3: Routing algorithms used in comparison
against RLB

RLBth to that of the three oblivious routing algorithms
listed in Table 3.

4.3.1 Throughput on Random Permutations
We compare the throughput of RLB and RLBth with

VAL, ROMM, and DOR on 106 randomly selected permu-
tations on an 8-ary 2-cube2. Histograms of the saturation
throughput across the simulated permutations are shown in
Figure 10. RLB has a smooth bell-shaped histogram cen-
tered at 0.51 throughput. RLBth’s histogram (not shown) is
almost identical to that of RLB but centered at 0.512. VAL
achieves the same throughput on all traffic permutations.
Hence its histogram is a delta function at 0.5. The his-
togram for ROMM is noisier and has an average saturation
throughput of 0.453 - 12% lower than RLBth’s throughput.
DOR’s histogram has three spikes at 0.25, 0.33 and 0.5 corre-
sponding to a worst case link load of 4, 3 and 2 in any per-
mutation. DOR’s average saturation throughput is 0.314,
39% lower compared to RLBth. The average saturation
throughputs are summarized in Table 4. RLB algorithms
have higher average throughput on random permutations
than VAL, ROMM, or DOR.

Algorithm Average throughput

RLBth 0.512
RLB 0.510
VAL 0.500

ROMM 0.453
DOR 0.314

Table 4: Average Saturation Throughputs for 106

random traffic permutations.

2These 106 permutations are selected from the N ! = kn!
possible permutations on an N -node k-ary n-cube.
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Figure 10: Histograms for the saturation through-
puts for 106 random permutations. (a) RLB, (b)
VAL, (c) ROMM, (d) DOR

4.3.2 Throughput on Specific Traffic Patterns
Table 5 shows the saturation throughput of each algorithm

on each traffic pattern3. The minimal algorithms, DOR and
ROMM, offer the best performance on benign traffic pat-
terns but have very poor worst-case performance. VAL gives
the best worst-case performance but converts every traffic
pattern to this worst case giving very poor performance on
the benign patterns. RLB strikes a balance between these
two extremes achieving a throughput of 0.313 on worst-case
traffic (50% better than ROMM and 25% better than DOR)
while maintaining a throughput of 2.33 on NN (366% better
than VAL) and 0.76 on UR (52% better than VAL). RLBth
improves the locality of RLB - matching the throughputs of
minimal algorithms in the best case and improving the UR
throughput of RLB (64% better than VAL). In doing so,
however, it marginally deteriorates RLB’s worst case per-
formance by 4%.

Figure 11 shows the latency-throughput curve for each of
our five algorithms on nearest-neighbor (NN) traffic. RLBth,
ROMM, and DOR share the same curve on this plot since
they all choose a minimal route on this traffic pattern. The
VAL curve starts at a much higher zero load latency because
it destroys the locality in the pattern.

The latency throughput curves for each algorithm on bit
complement (BC) traffic are shown in Figure 12. At almost
all values of offered load, VAL has significantly higher la-
tency. However, VAL has a higher saturation throughput
than RLB.

The worst case row of Table 5 reflects the lowest through-
put for each algorithm over all possible traffic patterns. The
worst case throughput and traffic pattern (permutation) for
each routing algorithm is computed using the method de-
scribed in [1]. Using worst-case permutations for this evalu-

3The worst-case pattern is different for each algorithm. See
Appendix A.
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Figure 11: Performance of different algorithms on
NN (Nearest neighbor) traffic.

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
v
e
r
a
g
e
 
D
e
l
a
y
 
p
e
r
 
p
a
c
k
e
t
 
(
t
i
m
e
 
s
t
e
p
s
)
 

Offered Load 

"VAL"
"RLBth_BC"
"RLB_BC"
"ROMM_BC"
"DOR_BC"

Figure 12: Performance of different algorithms on
BC (Bit Complement) traffic.

ation is more accurate than picking some arbitrary adversar-
ial traffic pattern (like BC, TP, or TOR) since the worst-case
pattern for an algorithm is often quite subtle.

4.3.3 Latency
RLB gives a lower packet latency than fully randomized

routing (VAL). To quantify this latency reduction, we com-
puted latency histograms between representative pairs of
source and destination in a network loaded with uniform
random traffic for RLB, RLBth, VAL, ROMM, and DOR.

The latency, T , incurred by a packet is the sum of two
components, T = H +Q, where H is the hop count and Q is
the queueing delay. The average value of H is constant with
load while that of Q rises as the offered load is increased.
For a minimal algorithm, H is equivalent to the manhattan
distance D from source to destination. For non-minimal
algorithms, H ≥ D.

In an 8-ary 2-cube, the manhattan distance between a
source and a destination node can range from 1 to 8. In our
experiments, we chose to measure the latency incurred by

Traf DOR VAL ROMM RLB RLBth

NN 4 0.5 4 2.33 4
UR 1 0.5 1 0.76 0.82
BC 0.50 0.5 0.4 0.421 0.41
TP 0.25 0.5 0.54 0.565 0.56

TOR 0.33 0.5 0.33 0.533 0.533
WC 0.25 0.5 0.208 0.313 0.30

Table 5: Comparison of saturation throughput of
RLB, RLBth and three other routing algorithms on
an 8-ary 2-cube for six traffic patterns.

packets from a source to 3 different destination nodes:

• A (0,0) to B (1,1) - path length of 2 representing very
local traffic.

• A (0,0) to C (1,3) - path length of 4 representing semi-
local traffic.

• A (0,0) to D (4,4) - path length of 8 representing non-
local traffic.

The histograms for semi-local paths (packets from A to C)
are presented 4 in Figure 13. The histograms are computed
by measuring the latency of 104 packets for each of these
three pairs. For all experiments, offered load was held con-
stant at 0.2. The experiment was repeated for each of the
five routing algorithms. The histogram for DOR is almost
identical to that of ROMM and is not presented.
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Figure 13: Histograms for 104 packets routed from
node A(0,0) to node C(1,3). (a) VAL, (b) RLB, (c)
RLBth, (d) ROMM. The network is subjected to
UR pattern at 0.2 load.

DOR and ROMM have a distribution that starts at 4
and drops off exponentially - reflecting the distribution of
queueing wait times. This gives an average latency of 4.28
and 4.43 respectively. Since both these algorithms always

4For the other sets of histograms see Appendix B.



route minimally, their H value is 4 and therefore, Q values
are 0.28 and 0.43 respectively.

RLBth has a distribution that is the superposition of two
exponentially decaying distributions: one with a H of 4 that
corresponds to picking quadrant I of Figure 4 and a second
distribution with lower magnitude starting at H = 6 that
corresponds to picking quadrant II. The bar at T = 6
appears higher than the bar at T = 4 because it includes
both the packets with H = 6 and Q = 0 and packets with
H = 4 and Q = 2. The average H for RLBth is 4.75, giving
an average Q of 0.81.

The distribution for RLB includes the two exponentially
decaying distributions of RLBth corresponding to H = 4
and H = 6 and adds to this two additional distributions
corresponding to H = 10 and H = 12 corresponding to
quadrants III and IV of Figure 4. The probability of pick-
ing quadrants III and IV is low, giving the distributions
starting at 10 and 12 very low magnitude. The average H
for RLB is 5.5, giving an average Q of 0.98.

VAL has a very high latency with a broad distribution
centered at T = 9.78. This broad peak is the superposition
of exponentially decaying distributions starting at all even
numbers from 4 to 12. The average H component of this
delay is 8 since each of the two phases is a route involving a
fixed node and a completely random node (4 steps away on
average). The average Q is 1.78.

The results for all the three representative paths are sum-
marized in Table 6. VAL performs the worst out of all the
algorithms. It has the same high H and Q latency for all
paths. DOR and ROMM being minimal algorithms, do the
best at this low load of 0.2. They win because their H la-
tency is minimal and at a low load their Q latency is not
too high. RLB algorithms perform much better than VAL
- in both H and Q values. RLB is on average 2.2 times,
1.5 times and 1.1 times faster than VAL on local, semi-local
and non-local paths respectively. RLBth does even better
by quickly delivering the very local messages - being 3.65
times, 1.76 times and 1.11 times faster than VAL on the
same three paths as above.

4.4 Taxonomy of Locality-Preserving Random-
ized Algorithms

RLB performs three randomizations to achieve its high
degree of load balance: (1) it randomly chooses a quadrant,
and hence a direction vector for routing, (2) it randomly
chooses an order in which to traverse the dimensions, and (3)
it randomly chooses an intermediate waypoint node in the
selected quadrant. We can generate eight non-backtracking,
locality-perserving randomized routing algorithms by dis-
abling one or more of these randomizations.

In this taxonomy of routing algorithms, each algorithm
is characterized by a 3-bit vector. If the first bit is set the
quadrant is chosen randomly (weighted to favor locality).
Otherwise the minimal quadrant is always used. If this bit
is clear the routing algorithm will be minimal. All non-
minimal algorithms have random quadrant selection. The
dimensions are traversed in a random order, if the second
bit is set and in a fixed order (x first, then y, etc...) if this bit
is clear. Finally, the third bit, if set, causes the packet to be
routed first to a random waypoint in the selected quadrant
and then to proceed to the destination - without reversing
direction in any dimension. For example a vector of 111 cor-
responds to RLB - all randomizations enabled and a vector

of 000 corresponds to DOR - no randomization. By examin-
ing the points between these two extremes we can quantify
the contribution to load balance of each of the three ran-
domizations.

Table 7 describes the eight algorithms and gives their per-
formance on our six traffic patterns5. All four minimal al-
gorithms have same high performance on the benign traf-
fic patterns (NN and UR) since they never misroute. The
first randomization we consider is the order of dimensions.
Vector 010 gives us dimension order routing with random
dimension order - e.g., in 2-D we go x-first half the time
and y-first half the time. This randomization eases the bot-
tleneck on transpose, doubling performance on this pattern,
but does not affect worst-case performance. So we can see
that randomizing dimension order alone does not improve
worst-case performance.

Next, let us consider the effect of a random waypoint in
isolation. Vector 001 gives us ROMM, in which we route
to a random waypoint in the minimal quadrant and then
on to the destination. This randomization, while it im-
proves performance on Transpose, actually reduces worst-
case throughput and throughput on bit complement. This
is because the choice of a random waypoint concentrates
traffic in the center of a region for these patterns. Com-
bining random directions with a random waypoint, vector
011, while it improves Transpose further does not affect the
other patterns. Thus, routing to a random waypoint alone
actually makes things worse, not better.

Finally, we will consider the non-minimal algorithms. Vec-
tor 100 corresponds to random direction routing (RDR) in
which we randomly select directions in each dimension, in
effect selecting a quadrant, and then use dimension-order
routing within that quadrant. As described in Section 3,
this selection is weighted to favor locality. Randomly select-
ing the quadrant by itself gives us most of the benefits (and
penalties) of RLB. We improve worst-case performance by
14% compared to the best minimal scheme, and we get the
best performance of any non-minimal algorithm on bit com-
plement. However, performance on transpose suffers, it is
equal to worst-case, due to the fixed dimension order. Ran-
domizing the dimension order, vector 110, fixes the trans-
pose problem but does not affect the other numbers.

Routing first to a random waypoint within a randomly-
selected quadrant, vector 101, gives slightly better worst-
case performance 24% better than minimal and 8% bet-
ter than RDR. However using a random waypoint makes
transpose and bit complement worse. Putting all three ran-
domizations together, which yields RLB as described in Sec-
tion 3, gives slightly better worst-case, transpose, and nearest-
neighbor performance.

Overall, the results show that randomization of quadrant
selection has the greatest impact on worst-case performance.
Non-minimal routing is essential to balance the load on ad-
versarial traffic patterns. Once quadrant selection is ran-
domized, the next most important randomization is selec-
tion of a random waypoint. This exploits the considerable
path diversity within the quadrant to further balance load.
However, applying this randomization by itself actually re-
duces worst-case throughput. The randomization of dimen-
sion order is the least important of the three having little
impact on worst-case throughput. However, if a random

5The worst-case pattern is not the same for all eight algo-
rithms.



Algorithm TA−B HA−B QA−B TA−C HA−C QA−C TA−D HA−D QA−D

DOR 2.3 2 0.3 4.28 4 0.28 8.24 8 0.24
ROMM 2.34 2 0.34 4.43 4 0.43 8.42 8 0.42
RLBth 2.68 2 0.68 5.56 4.75 0.81 8.81 8 0.42
RLB 4.31 3.5 0.81 6.48 5.5 0.98 8.92 8 0.92
VAL 9.78 8 1.78 9.78 8 1.78 9.78 8 1.78

Table 6: Average total, hop and queueing latency (in Time Steps) for 104 packets for 3 sets of representative
traffic paths at 0.2 load. A − B, A − C and A − D represent local, semi-local and non-local paths respectively.
All other nodes send packets in a uniformly random manner at the same load.

Vector Description NN UR BC Tpose Tor WC

000 DOR-F - dimension-order routing 4 1 0.5 0.25 0.33 0.25
010 DOR-R - with randomized dimension order 4 1 0.5 0.5 0.33 0.25
001 ROMM-F - fixed dimension order - route first to

a random node q in the minimal quadrant and
then to the destination

4 1 0.4 0.438 0.33 0.208

011 ROMM-R - random dimension order - like 001
but the order in which dimensions are traversed
is randomly selected for both phases.

4 1 0.4 0.54 0.33 0.208

100 RDR-F - randomly select a quadrant (weighted
for locality) and then route in this quadrant us-
ing a fixed dimension order

2.28 0.762 0.5 0.286 0.533 0.286

110 RDR-R - with random dimension order 2.286 0.762 0.5 0.571 0.533 0.286
101 RLB-F - with fixed dimension order 2.286 0.762 0.421 0.49 0.533 0.310
111 RLB-R 2.33 0.76 0.421 0.565 0.533 0.313

Table 7: Taxonomy of locality preserving randomized algorithms. Saturation throughputs are presented for
a 8-ary 2 cube topology.

waypoint is not used, randomizing dimension order doubles
throughput on traffic patterns like Transpose.

5. PREVIOUS WORK
Dimension-order routing (DOR), sometimes called e-cube

routing, was first reported by Sullivan and Bashkow [13].
With DOR routing, each packet first traverses the dimen-
sions one at a time, arriving at the correct coordinate in each
dimension before proceeding to the next. Because of its sim-
plicity it has been used in a large number of interconnection
networks [5, 11]. The poor performance of dimension-order
routing on adversarial traffic patterns motivated much work
on adaptive routing.

Valiant first described how to use randomization to pro-
vide guaranteed throughput for an arbitrary traffic pattern
[15]. His method perfectly balances load by routing to a ran-
domly selected intermediate node (phase 1) before proceed-
ing to the destination (phase 2). Dimension order routing
is used during both phases. While effective in giving high
guaranteed performance on worst-case patterns, this algo-
rithm destroys locality - giving poor performance on local
or even average traffic.

In order to preserve locality while gaining the advantages
of randomization, Nesson and Johnson suggested ROMM
[9], - Randomized, Oblivious, Multi-phase Minimal routing.
ROMM randomly selects one of the minimal paths for each
packet. While [9] reports good results on a few permuta-
tions, we have shown here that ROMM actually has lower
worst-case throughput than DOR. The problem is that it
is impossible to achieve good load balance on adversarial

patterns, such as tornado traffic, with minimal routing.
Adaptive routing is an alternative method of dealing with

adversarial traffic. Several adaptive routing algorithms have
been developed for torus networks [6, 8, 2]. An adaptive
routing algorithm based on [6] was employed in the Cray
T3E for this reason [12]. However, most of these proposed
adaptive routing methods balance load locally but not glob-
ally. They would all route tornado traffic along minimal
routes giving poor performance.

6. DISCUSSION

6.1 Deadlock and livelock
RLB algorithms, while non-minimal, are inherently live-

lock free. Once a route has been selected for a packet, the
packet monotonically makes progress along the route, re-
ducing the number of hops to the destination at each step.
Since there is no incremental misrouting, all packets reach
their destinations after a predetermined, bounded number
of hops.

As stated in Section 2, we assume a store and forward flow
control with unbounded buffers for the results presented in
this paper so deadlock due to channel or buffer dependency
is not an issue. The results here can be extended to virtual
channel flow control by using multiple virtual networks each
employing a variant of the turn model ([7]). However, such
an extension is beyond the scope of this paper.

6.2 Packet Reordering
The use of a randomized routing algorithm can and will



cause out of order delivery of packets. While this may be
acceptable for multiprocessor systems with a relaxed mem-
ory coherence model, memory systems with strict coherence
and internet routers require in-order delivery.

Several methods can be used to guarantee in order deliv-
ery of packets where needed. One approach is to ensure that
packets that must remain ordered (e.g., memory requests to
the same address or packets that belong to the same flow)
follow the same route. This can be accomplished, for ex-
ample, by using a packet group identifier (e.g., the memory
address or the flow identifier) to select the intermediate node
for the route. Packet order can also be guaranteed by re-
ordering packets at the destination node. For example, the
well known sliding window protocol [14] can be used for this
purpose.

7. CONCLUSION
Randomized Local Balance (RLB) is a non-minimal obliv-

ious algorithm that balances load by randomizing three as-
pects of the route: the selection of the routing quadrant,
the order of dimensions traversed, and the selection of an
intermediate waypoint node. RLB weights the selection of
the routing quadrant to preserve locality. The probability
of misrouting in a given dimension is proportional to the
distance to be traversed in that dimension. This exactly
balances traffic for symmetric traffic patterns like tornado
traffic. RLBth is identical to RLB except that it routes min-
imally in a dimension if the distance in that dimension is less
than a threshold value ( k

4
).

RLB strikes a balance between randomizing routes to achieve
high guaranteed performance on worst-case traffic and pre-
serving locality to maintain good performance on average or
neighbor traffic. On worst-case traffic RLB outperforms all
minimal algorithms achieving 25% more throughput than
dimension-order routing and 50% more throughput than
ROMM, a minimal oblivious algorithm. The worst-case
throughput of RLB, however, is 37% lower than the through-
put of a fully randomized routing algorithm. This degrada-
tion in worst-case throughput is balanced by a substantial
increase in throughput on local traffic. RLB (RLBth) out-
performs VAL by 4.6 (8) on nearest-neighbor traffic and 1.52
(1.69) on uniform random traffic. RLBth improves the lo-
cality of RLB, matching the performance of minimal algo-
rithms on local traffic, at the expense of a 4% degradation
in worst-case throughput.

RLB algorithms do not match the worst-case throughput
of a fully randomized algorithm, achieving 62% of the worst
case throughput of VAL. However, both RLB and RLBth
give higher saturation throughput on average for 106 random
traffic permutations. Also, RLB and RLBth provide much
lower latency, upto 3.65 times less, than VAL.

By selectively disabling the three sources of randomiza-
tion in RLB we are able to identify the relative importance
of each source. Our results show that the advantages of
RLB are primarily due to the weighted random selection of
the routing quadrant. Routing a fraction of the traffic the
long way around each dimension effectively balances load
for many worst-case patterns. By itself, randomly choosing
dimension order has little effect on worst-case performance
and by itself, picking a random intermediate node actually
reduces worst-case throughput.

The development of RLB opens up many exciting av-
enues for future work in locality-preserving routing algo-

rithms. Studying the worst-case permutations for RLB in-
dicates that it should be possible to get even higher perfor-
mance by allowing limited routing outside the selected quad-
rant - particularly for quadrants with high aspect ratios.
We are also interested in applying some of the principles
of RLB, in particular weighted random quadrant selection,
to adaptive algorithms and in comparing the performance
guarantees of adaptive and oblivious algorithms.
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Appendix A: Worst case permutations for the
algorithms described
In this Appendix, we enumerate the worst case permutations
for each of the five algorithms we have used in Table 5.



• Dimension Order : The transpose traffic permutation
- (i, j) sends to (j, i)- is a worst-case permutation for
this scheme. This skewed loading pattern overloads
the last right-going link of the 1st row resulting in an
offered bandwidth of 0.25 the network capacity.

• Valiant : Any traffic permutation is the worst case per-
mutation.

• 2 phase ROMM : The following is the worst case per-
mutation that [1] obtains which gives a saturation load
of 0.208 the network capacity. Figure 14 shows the
destination of each source node (i, j) in the worst case
permutation.

0 (0,3)     (0,0)     (7,5)     (7,0)     (7,6)     (4,1)     (0,1)     (0,2)

(6,3)     (0,5)     (0,6)     (0,7)     (1,0)     (5,1)     (6,1)     (6,2)

(7,3)     (6,0)     (5,4)     (5,2)     (4,6)     (7,7)     (7,1)     (7,2)

(7,4)     (1,5)     (1,6)     (1,7)     (2,0)     (6,7)     (6,6)     (6,5)

(0,4)     (4,7)     (4,2)     (5,0)     (2,4)     (5,7)     (5,6)     (5,5)  

(1,4)     (2,5)     (2,6)     (2,7)     (3,0)     (5,3)     (4,5)     (4,3)

(1,3)     (4,4)     (3,2)     (3,3)     (3,4)     (6,4)     (1,1)     (1,2)

(2,3)     (3,5)     (3,6)     (3,7)     (4,0)     (3,1)     (2,1)     (2,2)

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Figure 14: Worst case traffic permutation for 2
phase ROMM. Element [i, j] of the matrix gives the
destination node for the source node (i, j).

• RLB : The following (figure 15) is the worst case per-
mutation that [1] obtains which gives a saturation load
of 0.313 the network capacity.

0 (0.1)     (0,0)     (4,1)     (3,1)     (1,1)     (7,1)     (0,2)     (0,3)

(0,4)     (5,0)     (6,6)     (2,6)     (5,1)     (6,1)     (7,2)     (7,3)

(7,4)     (6,0)     (3,7)     (4,4)     (4,2)     (5,2)     (6,2)     (6,3)

(7,5)     (7,6)     (7,7)     (5,5)     (3,5)     (5,4)     (5,3)     (6,4)

(0,7)     (7,0)     (5,6)     (4,5)     (4,6)     (2,7)     (6,5)     (2,5)  

(0,6)     (6,7)     (4,7)     (1,6)     (4,0)     (3,4)     (2,4)     (1,5)

(1,4)     (5,7)     (1,7)     (2,0)     (4,3)     (3,3)     (2,2)     (2,3)

(0,5)     (1,0)     (3,6)     (3,0)     (3,2)     (2,1)     (1,2)     (1,3)

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Figure 15: Worst case traffic permutation for RLB.
Element [i, j] of the matrix gives the destination
node for the source node (i, j)

• RLBth : The worst case permutation for RLBth is very
similar to that for RLB and is not presented.

Appendix B: Latency at low load
In this Appendix, we present the histograms for average
latency for two source destination pairs, A(0,0) to B(1,1)
and A(0,0) to D(4,4) (see Figure 16) representing local and
non-local paths. The rest of the network is subjected to
uniform random traffic at load 0.2. Minimal algorithms do
best at this load while completely randomized algorithms
like VAL do very poorly especially for local paths.
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Figure 16: Latency histograms for 104 packets. (a)
VAL, (b) RLB, (c) RLBth, (d) ROMM (e)DOR, 1 -
from node A (0,0) to B (1,1), 2 - from node A (0,0)
to D (4,4)


