
Guaranteed Scheduling for Switches with
Configuration Overhead

Brian Towles and William J. Dally

Abstract— In this paper we present three algorithms that pro-
vide performance guarantees for scheduling switches, such as op-
tical switches, with configuration overhead. Each algorithm em-
ulates an unconstrained (zero overhead) switch by accumulating
a batch of configuration requests and generating a correspond-
ing schedule for a constrained switch. Speedup is required both
to cover the configuration overhead of the switch and to compen-
sate for empty slots left by the scheduling algorithm. Schedul-
ing algorithms are characterized by the number of configurations,
Ns, they require to cover a batch of requests, and the speedup re-
quired to compensate for empty slots, Smin. We show that a well
known exact matching algorithm, EXACT, leaves no empty slots
(i.e. Smin = 1), but requires Ns ≈ N2 configurations for an N -
port switch leading to high overhead or large batches and hence
high delay. We present two new algorithms that reduce the num-
ber of configurations required substantially. MIN covers a batch
of requests in the minimum possible number of configurations,
Ns = N , but at the expense of many empty slots, Smin ≈ 4 log2 N .
DOUBLE strikes a balance, requiring twice as many configura-
tions, Ns = 2N , while reducing the number of empty slots so
that Smin = 2. We show that DOUBLE offers the lowest required
speedup to emulate an unconstrained switch across a wide range
of port count and delay.

I. INTRODUCTION

Optical switches based on MEMs mirrors, tunable elements,
bubble switches, and similar technologies [1][2][3][4][5] have
been developed to meet the exponentially increasing demand
for switch bandwidth and port count. These optical switch-
ing technologies offer high bandwidth in an economical man-
ner. Switches built with this technology, however, require sig-
nificant time to reconfigure due to mechanical settling, syn-
chronization, and other factors. These configuration overheads
range from milliseconds for bubble and free-space MEMs
switches [2][3], to 10µs for MEMs waveguide switches [4], and
as little as 10ns for electroholographic techniques [5]. With typ-
ical cell sizes on the order of 50ns (64 bytes at 10Gb/s), these
switches take from 0.2 to 20,000 cell times to reconfigure. Ef-
ficiently scheduling such optical switches requires algorithms
that take this configuration overhead into account and optimize
the resulting schedule.

Algorithms and architectures for unconstrained (zero over-
head) switches often rely on the fact that switches are stateless:
any configuration can be presented each slot time with no differ-
ence in switch behavior. The configuration overhead of optical

B. Towles and W.J. Dally are with the Computer Systems Laboratory in the
Department of Electrical Engineering, Stanford University. This work has been
supported by an NSF Graduate Fellowship with supplement from Stanford Uni-
versity and under the MARCO Interconnect Focus Research Center. E-mail:
{btowles,billd}@cva.stanford.edu

switches introduces state: a reconfiguration overhead is experi-
enced if the switch configuration differs from the previous slot’s
configuration.

This paper develops an architecture and algorithms for using
a constrained switch to exactly emulate the behavior of a un-
constrained switch with a fixed delay. As long as the system
employing the switch can tolerate the fixed delay, the emula-
tion architecture can directly replace an unconstrained switch.
In essence, emulation decouples the constraints of non-zero
switching overhead from the classic switch scheduling prob-
lem. This allows designers to use optical signaling and switch-
ing directly with existing architectures and scheduling algo-
rithms. Unlike previous algorithms that perform best-effort
scheduling of constrained switches [6][7][8], the algorithms we
present give guaranteed performance.

The emulation architecture operates by accumulating a batch
of T switch requests and then mapping this batch onto a set of
Ns < T switch configurations. Reducing the number of config-
urations reduces the time spent reconfiguring the switches and
hence reduces the delay required for emulation. However, there
is a tradeoff as aggressive reduction in the number of config-
urations can lead to a large number of empty slots and hence
require a large speedup.

We explore three algorithms that span this design space of
number of the configurations versus the number of empty slots.
At one end of the design space, a well-known exact decomposi-
tion algorithm, EXACT [7], generates a schedule with no empty
slots but requires Ns ≈ N2 configurations (where N is the
number of ports) and therefore a very high delay. At the other
extreme, we introduce a new algorithm, MIN, that generates a
minimum number of configurations, Ns = N , but leaves most
slots empty and requires a switch speedup of Θ(logN). We
balance delay and speedup with another new algorithm, DOU-
BLE, that requires twice the minimum number of configura-
tions, Ns = 2N , but leaves at most half of the slots empty, thus
requiring a switch speedup of 2.

We compare the overhead of these three algorithms across
the space of switch size N and delay T . Our results show that
DOUBLE offers the lowest overhead of the three algorithms
across a wide portion of this space. EXACT offers better per-
formance only for low port count or high delay, and MIN offers
better performance only for very low delays. Viewed another
way, for a fixed overhead, DOUBLE requires much lower de-
lay for emulation than EXACT at the expense of a speedup of
two. For example, for a N = 128 port MEMS switch with a
configuration time of 10µs, EXACT requires a minimum delay
of 320ms while DOUBLE can operate with a delay of 5ms.

The remainder of this paper explores the design of algorithms

that provide service guarantees for switches with configuration
overhead in more detail. Section 2 introduces our notation
along with a simple switch model used throughout the paper.
The emulation architecture is detailed in Section 3. Section 4
introduces the three algorithms and discusses their performance
guarantees. Section 5 compares the three algorithms in terms of
overhead and delay as a function of switch ports. Related work
is discussed in Section 6. Finally, conclusions are drawn in Sec-
tion 7. Correctness proofs for the new algorithms are included
in an appendix.

II. PRELIMINARIES

Below is a list of symbols used throughout the paper:

ai,j element (i, j) of matrix A
C cumulative request matrix, the sum of the switch con-

figurations requested over a period of time; the rows
and columns sum to the number of configurations re-
quested

C(T) C where rows and columns sum to T
δ switching overhead in slot times
H batch scheduling time in slot times (rounded up to

the nearest integral number of batch times T to allow
pipelining)

N number of switch ports
Ns number of switchings per batch
φ switch configuration interval (weight)
S internal speedup of switch
P switch configuration / permutation matrix
T batch size in slot times

This paper deals with scheduling of a crossbar switch that can
realize any one-to-one (unicast) mapping of inputs to outputs.
Such a mapping is described by a switch configuration P , where
P is a permutation matrix; when an element pi,j is one, input i
is connected to output j for that configuration. Multicast traffic
is not considered. Time is slotted and a new configuration may
be provided to the crossbar each slot time.

Unlike typical electronic switches, the model also associates
a fixed, non-zero switching overhead δ with each switching
event (any change in the switch configuration). The fixed
switching overhead is intended to capture all effects, such as
mechanical settling times and synchronization overhead, that
temporarily prevent transmission as a switching element is re-
configured. An unconstrained switch has δ = 0, whereas a
constrained switch has δ > 0. We express δ in units of slot
times.

Finally, a matrix A is covered by a set of switch
configurations P (1), . . . , P (Ns) and corresponding weights
φ(1), . . . , φ(Ns) if

Ns∑
k=1

φ(k)pi,j(k) ≥ ai,j , ∀i, j ∈ {1, . . . , N}.

In the case of equality for all i and j, the switch configurations
exactly cover A.

N
inputs

N outputs

switch
configuration

scheduler

Fig. 1. Emulation architecture

III. ARCHITECTURE

We emulate an unconstrained switch using a constrained
crossbar with input and output queues (Figure 1) where the con-
strained crossbar has speedup S to compensate for its switching
overhead δ. The dashed boundary represents the standard un-
constrained interface: N inputs, N outputs, and a configuration
input. The speedup S refers to the ratio of the internal line rate
to the input line rate. The input and output queues enable this
rate mismatch by physically decoupling the internal and exter-
nal lines.

A. Emulation Approach

The scheduler in Figure 1 performs pipelined batch schedul-
ing in four phases. In the first phase, a batch is created by accu-
mulating the requested configurations P (t) over an interval T
such that

C(T) =
n+T−1∑

t=n

P (t).

Later phases may reorder the data, so incoming data is tagged
with its arrival time allowing the original order to be restored.

The second phase finds Ns switch configurations
P ′(1), . . . , P ′(Ns) and weights φ(1), . . . , φ(Ns) that cover
C(T).

In the third phase, the switch is configured in the se-
quence P ′(1), . . . , P ′(Ns) with each configuration held for
φ(1), . . . , φ(Ns) slot times. If the switch configurations cover
C, all traffic accumulated in the first phase can traverse the
switch during the third phase. Guaranteeing that all the traf-
fic does traverse the switch ensures no data element stays in the
input queues for more than T + H slot times. After traversal,
data is reordered as it is stored in the output buffers.

Finally, the fourth phase simply sends the data from the out-
put buffers onto the output lines in the same order it entered the
switch. As shown by the arc between an arriving data element
and its departure from the switch (Figure 2), this relationship
implies a delay bound of 2T + H when H slot times are re-
served for the second phase scheduling. Therefore the outputs

time

output buffers
occupied

input buffers occupied

0 T

P
ha

se
1

2

3

4

T+H 2T+H 3T+H

Fig. 2. Batch timeline

exactly emulate the behavior of a corresponding unconstrained
switch plus the fixed delay of 2T +H .

As expected, the amount of storage required in the architec-
ture grows linearly with T . The pipeline diagram (Figure 2)
indicates the buffer occupancy required for a single batch. Let
L indicate the number of bits sent to a single input port during
a slot time. Considering one port, a batch is held for 2T + H
slot times in the input buffers and since a new batch is started
each T slot times, enough buffers for (2T + H)L bits of data
are required in the input stage. Similarly, data is held for 2T
slot times in the output stage, requiring 2TL bits of buffering.
So, considering all ports, the architecture needs (4T + H)LN
bits of buffering total.

B. Emulation Requirements

To compensate for the overhead of switch configuration δ
and slots left empty by the scheduling algorithm, the emula-
tion architecture must operate with a speedup S that depends
on the batch size T as illustrated in Figure 3. S is selected
to ensure that C(T) can be completely transmitted during the
third phase of the emulation algorithm. The time spent on con-
figuration overhead during each batch of Ns configurations is
Tmin = δNs, the left asymptote of the S versus T curve. This
leaves time T − Tmin to send T slots of data. If the scheduling
algorithm exactly filled each of the slots with data, the speedup
required would be Sexact = T/(T − Tmin).

Not all algorithms completely fill the slots, however. So the
total number of slots used by a scheduling algorithm Ts can be
greater than T in general. Thus, the speedup required to com-
pensate solely for these empty slots is Smin = Ts/T , which
gives the bottom asymptote of the S versus T curve. Viewed
another way, the fraction of slots filled by the scheduling algo-
rithm is 1/Smin. So, for example, if half the slots are filled with
data, an additional speedup of Smin = 2 is required beyond the
speedup Sexact necessary to compensate for switching overhead.

Multiplying these two speedups gives the total speedup re-
quired for a particular batch size T :

S =
SminT

T − Tmin
=

SminT

T − δNs
, T > Tmin.

This relationship can be also rewritten to give the batch size

10
2

10
3

0

1

2

3

4

5

6

7

8

9

10

Delay, T

S
pe

ed
up

, S

T
min

S
min

Fig. 3. Speedup required for emulation (Ns = 128, δ = 1)

required for a particular speedup S,

T =
STmin

S − Smin
=

δNsS

S − Smin
, S > Smin.

IV. SCHEDULING ALGORITHMS

The scheduling task is a time-slot assignment problem.
Given an input-output request matrix C, assign a switch traver-
sal time for each element in C so that the total transmission
time is minimized. Emulation also requires guarantees about
the performance of scheduling algorithms. That is, for any ma-
trix C and switching overhead δ, the worst-case transmission
time required for a scheduling algorithm must be bounded.

This section presents several approaches for achieving guar-
anteed performance and examines the tradeoff between the
number of switch configurations used to cover the matrix and
the number of empty slots left by the algorithm. An example of
this tradeoff is illustrated in Figure 4. First, a request matrix C
is decomposed into 4 switch configurations that exactly coverC
(Figure 4a). The accompanying time-slot assignment diagram
shows the connection of inputs (shown vertically) to particular
outputs, denoted by slot labels. The shaded segments show the
switching time required between different configurations. An
alternative decomposition of C gives only 3 switchings, but the
corresponding time-slot assignment contains empty slot times
(Figure 4b). Since each configuration is held for the maximum
time of all the elements contained within it, some slots are left
unused. From this simple example, it should be clear that fewer
switchings require less overhead time, but at the potential cost
of leaving slots empty during switch traversal. This tradeoff is
quantified in the following subsections.

A. Exact covering

A well-known decomposition of any matrix C(T) [7][9] ex-
actly covers the matrix in at most Ns = N2 − 2N + 2 switch
configurations.

Theorem 1: Ns = N2 − 2N + 2 switch configurations and
positive integer weights φ(1), . . . , φ(Ns) are necessary and suf-
ficient to exactly cover any N ×N matrix C(T).

= +

to 1

to 3

to 2

1

2

3

2

1

3

3

2

1

1 2 4
5 1 1

1 4 2
+ +

Input 1

2

3

C =

time

4
4

4
1

1

1
1

1

1
1

1

1
= +1 2 4

5 1 1

1 4 2
+C = 4

5

4
1

1

2
2

1

1

time

to 1

to 3

to 2

2

1

3

3

2

1

Input 1

2

3

(a) Decomposition into 4 configurations (b) Decomposition into 3 configurations

Fig. 4. Tradeoff between fewer switch configurations and empty slots

Proof: As noted in [10] (page 36), necessity is proved
in [11] and sufficiency in [9]. �

Several algorithms are suggested in [7] to realize the lower
bound on the number of configurations required. These algo-
rithms include optimizations to improve the average number of
configurations, but we consider a simple algorithm that only
meets the bound of Ns = N2−2N+2 configurations. Such an
algorithm performs O(N2) maximum-size matchings, which
have a time complexity of O(N2.5). Therefore, the overall time
complexity of an algorithm to exactly cover C is O(N4.5).

Given the bound on the number of switch configurations,
the total amount of switching overhead can be determined, and
therefore the required speedup can be calculated.

Corollary 1: A speedup of

T

T − δ(N2 − 2N + 2)

is sufficient to schedule C(T) in T slot times.
Proof: This follows directly from the number of switch-

ings Ns = N2−2N+2 and the minimum speedup of Smin = 1
required for an exact covering. �

Note that the minimum fixed delay experienced by the
switch, Tmin = δ(N2 − 2N + 1), must grow at least with the
square of the number of ports on the switch. This implies the
amount of storage must also grow with O(N2). In a system
where the bandwidth between input-output pairs is expensive
relative to the cost of providing the storage and tolerating the
fixed delay, exact covering is an attractive approach. Since
N2 − 2N + 1 configurations are necessary to exactly cover
C, further reducing the number of switchings would introduce
empty slots leading to a waste of the expensive bandwidth. Al-
ternatively, in systems with inexpensive bandwidth a designer
may be willing to trade that bandwidth for a smaller fixed delay
and less storage requirements.

B. Minimum switchings

While O(N2) configurations are necessary to exactly cover
C, it is possible to cover any C with as few as N configura-
tions. This is clearly the minimum number of configurations as
C has N2 non-zero entries in general and each configuration
covers at most N of these entries. However, the use of fewer

A =

T ′

T ′/2 T ′/2
T ′/2 T ′/2

T ′/3 T ′/3 T ′/3
T ′/3 T ′/3 T ′/3
T ′/3 T ′/3 T ′/3

. . .

Fig. 5. Portion of adversarial matrix

configurations introduces empty slots which must be overcome
with speedup. In this section, we show that cost of these empty
slots can be quite significant: for Ns = N , Smin is Θ(logN).

Theorem 2: To transmit a general cumulative schedule ma-
trix C(T) in N switch configurations, Smin must be at least
Ω(logN) for T > N .

Proof: An adversarial matrix C is constructed by the fol-
lowing algorithm1:

Step 1. Initialization. Create two N ×N matrices, A and B.
Initialize all entries of A to zero and all entries of B to one. Set
i← 1 and j ← 1.

Step 2. Build A. Fill the submatrix

A(i : i+ j − 1, i : i+ j − 1) = T ′/j,

where T ′ = T −N . Set i← i+ j and j ← j+1. If i+ j > N
go to Step 3, otherwise repeat Step 2.

Step 3. Create C. Set C ← A+B and I ← i.
From the construction of A (Figure 5), it is clear that each

row and column sums to T ′. The rows and columns of B each
sum to N , and therefore each row and column sum of C is T .

The addition of the B matrix to A guarantees that there
are no non-zero elements in C. Since all N2 elements are
covered in N switch configurations, each configuration must
cover N unique elements. This implies that each element is
included in exactly one switch configuration. For any schedul-
ing algorithm that covers C, a switch configuration P (1) will

1For clarity, this proof assumes that all parameters are such that the elements
of C are integers. However, the same result holds if the elements of the con-
structed C are all rounded down to the nearest integer.

contain the T ′ + 1 entry (element c1,1). Two switch config-
urations are required to cover all the T ′/2 + 1 entries, so at
least one of the entries will be in a configuration P (2), where
P (2)
= P (1). Likewise, one T ′/3 + 1 entry will be in P (3),
where P (3)
= P (2) and P (3)
= P (1). This argument contin-
ues for I of the switch configurations. Since the time required
for a switch configuration is the maximum of all elements in
that configuration, switching P (1) through P (I) requires at
least

(T ′ + 1) + (T ′/2 + 1) + . . .+ (T ′/I + 1) > T ′ ln I.

From the above algorithm, I is the largest integer such that∑I
i=1 i ≤ N , or

I =
⌊(√

1 + 8N − 1
)
/2

⌋
>
√

2N − 3/2.

Substituting yields the total number of time slots required,

(T −N) ln(I) > (T −N) ln(
√

2N − 3/2).

Therefore an Smin of at least Ω(logN) is required. �
This result shows that regardless of the algorithm used,

scheduling C so that there are only N switch configurations
requires Smin = Ω(logN) in general. A simple algorithm MIN
(Algorithm 1) shows this bound on the minimum speedup is
also sufficient2. The algorithm’s running time is dominated
by N maximum size matchings, for a total time complexity of
O(N3.5).

The MIN algorithm operates by identifying the largest, un-
scheduled elements of C in Step 2 and then schedules these
elements in Steps 3–4. At the beginning of each outer loop it-
eration (Step 2), unscheduled elements of C greater than the
threshold T/d are indicated in A. Because the rows (columns)
of C sum to T , there can be at most d− 1 elements greater than
or equal to this threshold in each row (column). Then, at least
one element per column of A is removed in the inner loop (Step
4) and by performing the inner loop d−1 times, all the elements
in C above the threshold are scheduled.

Before the inner loop begins, the bipartite multigraph GA

corresponding to A is edge-colored. This ensures no two ele-
ments in the same row or column have the same color, which
requires at most d − 1 colors by the classical result of König.
Then, each iteration of the inner loop handles one of these col-
ors at a time.

During the inner loop, all the edges of a particular color are
partitioned into two half-size subsets to guarantee they are all
scheduled as part of a perfect matching3. By only considering
half the edges at time, it is guaranteed that a perfect matching
that contains these edges exists in GA as long as the degree of
GA is more than 3N/4, which is ensured by the loop condition
in Step 5. This is formally proved in the Appendix.

For each iteration of the outer loop, 2(d − 1) schedules are
created each iteration, each with weight 2T/d. Therefore, the
total weight per iteration is approximately 4T . Also, since d

2The algorithm and analysis presented assume N ≥ 8 for simplicity. Cases
where N < 8 can be handled by slightly modifying Steps 4–5.

3A perfect matching is a subset of edges such that each vertex is incident with
exactly one edge in that subset.

Algorithm 1 Minimum switchings (MIN)
Step 1. Initialization. Create an N×N indicator matrix B with
all entries set to one. Set d← 2 and k ← 1.
Step 2. Identify large elements. Define the N × N matrix A
such that

ai,j =
{

1 if ci,j > T/d and bi,j = 1
0 otherwise

Step 3. Color. Construct the bipartite graph GA from A (zero
entries do not have a corresponding edge). Perform a minimal
edge coloring of GA.
Step 4. Schedule. Set c← 1.
Step 4a. Partition edges. Let the matching Mc be the subset
of edges in GA assigned to color c. Take any subset of edges
Ea ⊆Mc, such that |Ea| = �|Mc|/2�. Then Eb ←Mc − Ea.
Step 4b. Schedule Ea. Construct the bipartite graph GB =
(EB , VB) from B. Remove edges from Ea which have been
previously scheduled by setting Ea ← Ea ∩ EB . Then, for
each edge in Ea, remove the corresponding edge, that edge’s
endpoints, and edges incident to those endpoints fromGB . Find
the maximum-size matching MB on the remaining vertices and
edges of GB . Construct the configuration P (i) from the com-
bination of the two matchings Mc ∪ MB and set the weight
φ(i)← �2T/d�. Set B ← B − P (i) and i← i+ 1.
Step 4c. Schedule Eb. Repeat the procedure of Step 4b, but for
the edges of Eb instead of Ea.
Step 4d. Loop over colors. Set c← c+ 1. If c ≤ d− 1, then go
to Step 4a. Otherwise continue to Step 5.
Step 5. Loop. Set d ← 2d. If (i − 1) + 2(d − 1) ≤ N/4, then
go to Step 2. Otherwise continue to Step 6.
Step 6. Finish. Construct the bipartite graph GB from B. Per-
form a maximum-size matching on GB and produce the switch
schedule P (i). Set φ(i) ← �2T/d�, B ← B − P (i), and
i ← i + 1. Repeat Step 6 until there are no non-zero elements
remaining in B.

is doubled each loop iteration, the total number of iterations is
proportional to logN . Step 6 schedules the remaining elements
of C with a fixed weight, but since these elements are small,
their contribution does not affect the overall logarithmic behav-
ior of the algorithm.

Figure 6 shows an execution of the MIN algorithm for a ma-
trix with N = 32 and T = 32. For simplicity, only a por-
tion of the matrices and the first several steps are illustrated. In
the first iteration of the example, d = 2 and the first cutoff is
T/d = 16. All entries > 16 are considered for scheduling and
indicated in A. For the first iteration, A requires only d−1 = 1
color in Step 3. Then, during Step 4a, the non-zero entries of
A are partitioned into two subsets Ea (circled) and Eb (not cir-
cled). The elements of Ea are a subset of a perfect matching
found in Step 4b, which is used as schedule P (1) with weight
φ(1) = 2T/d = 32. Similarly, the elements of Eb are sched-
uled in Step 4c. After both steps, B is shown with zero entries
corresponding to the scheduled elements of C.

The outer loop is repeated for d = 4 and all unscheduled
elements in C greater than T/d = 8 are indicated in A. Again,

C(32) =

Step 2,
d = 2

Step 2, d = 4

1 6 11 13
2 19 3 3
9 0 14 7

18 2 1 5
0 0 0 0
0 1 0 0
0 0 0 0

1 0 0 0

A =

Step 4,
c = 1

Ea Eb

φ(1) = 32

P(1)=

φ(2) = 32

P(2)=
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1

Step 4,
c = 1

Ea Eb

φ(3) = 16

P(3)=

φ(4) = 16

P(4)=
0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0
0 0 0 1
1 0 0 0
0 1 0 0

0 0 1 0

0 0 1 1
0 0 0 0
1 0 0 0

0 0 0 0

A = Step 4,
c = 2, 3

0 0 1 1
1 0 0 1
1 1 0 0

0 1 1 0

B =

Fig. 6. Example execution of MIN (N = 32, T = 32). Only a portion of all steps is shown.

A is colored using d− 1 = 3 colors. Schedules P (3) and P (4)
correspond to the first color, while the remaining colors (shown
in gray) are used for schedules P (5) through P (8). In Step 5,
(i−1)+2(d−1) = 8+14 = 22 is greater than N/4 = 8, so the
algorithm goes to Step 6 and creates the remaining schedules.

The general operation of MIN is verified in the Appendix.
Theorem 3: To cover a general cumulative schedule matrix

C(T) with N switch configurations Smin = 4T (4 + log2 N) is
sufficient.

Proof: Let m be the number of iterations of the outer loop
of MIN (Steps 2–5). m is the largest integer such that

2
m∑

i=1

2i − 1 = 2(2m+1 −m− 2) ≤ N/4.

Using m, the total weight of the schedules produced from Steps
2–5 is then

2
m∑

i=1

(2i − 1)�2T/2i� < 4Tm.

And the total weight produced during Step 6 is

(N−2(2m+1−m−2))�2T/2m+1� ≤ 2T (N + 2m+ 4)
2m+1

−4T.

By conservatively estimating m as �log2(N/16)�, a bound on
the total weight is then

4T �log2(N/16)�+
2T (N + 2�log2(N/16)�+ 4)

2�log2(N/16)�+1
− 4T.

Through further simplification, this expression can be bounded
by 4T (4 + log2 N). Therefore the minimum speedup is suffi-
cient. �

Corollary 2: A speedup of

4T (4 + log2 N)
T − δN

is sufficient to schedule C(T) in T slot times.

Proof: This follows directly from the number of switch-
ings Ns = N and the minimum speedup of Smin = 4(4 +
log2 N) required for MIN. �

So, while successfully reducing the number of configurations
to the minimum possible, the amount of speedup required to
support this few switchings grows with logN . This could be
an effective tradeoff for switches with inexpensive bandwidth
or a small number of ports. However, for larger switches, the
required speedup factor could be too expensive. In this case, a
more attractive alternative may be to use a near minimum num-
ber of configurations.

C. Near minimum switchings

As described in the previous section, using the minimal num-
ber of switchings requires a speedup of at least logN . In this
section we show that by allowing 2N switchings, the mini-
mum speedup Smin can be reduced to approximately two. Most
importantly, the minimum speedup is no longer a function of
N . This approach has the advantage of the EXACT algo-
rithm, a small, constant speedup, combined with a number of
switchings that grows linearly with N . The DOUBLE algo-
rithm (Algorithm 2) produces schedules with these properties in
O(N2 logN) time using the edge-coloring algorithm of [12].

DOUBLE works by separating C into coarse and fine matri-
ces and devotes N configurations to each. The algorithm first
generates the coarse matrix A by dividing the elements of C
by T/N and taking the floor. The rows and columns of A sum
to at most N , thus the corresponding bipartite multigraph can
be edge-colored in N colors. Each subset of edges assigned
to a particular color forms a matching, which is weighted by
�T/N�. The fine matrix for C does not need to be explicitly
computed because its elements are guaranteed to be less than
�T/N�. Thus any N configurations that collectively represent
every entry of C, each weighted by �T/N�, can be used to
cover the fine portion.

An example execution of DOUBLE is shown in Figure 7.
The algorithm begins by creating the coarse matrix A by di-
viding each element in C by T/N and taking the floor. So,

A =
0
4

2
0

0
0

0
0

0 0 1
0 01 2

1

C(16) =
0

0
3
0

2
0

0 3 6
0 26 8

7

16
11

1
1

1
1

φ(5) = 4

P(5)=

φ(6) = 4

P(6)=
1

1

1
1

1
1

1
1

φ(7) = 4

P(7)=
1

1

1
1

φ(8) = 4

P(8)=

Step 1

Step 3

Step 4

Step 2

1
1

1
1

φ(1) = 4

P(1)=

1
1

1
1

φ(2) = 4

P(2)=

1

1

φ(3) = 4

P(3)=

1

φ(4) = 4

P(4)=

Fig. 7. Example execution of DOUBLE (N = 4, T = 16)

Algorithm 2 Near minimum switchings (DOUBLE)
Step 1. Split C. Define an N ×N matrix A such that

ai,j =
⌊ ci,j
T/N

⌋
.

Step 2. Color A. Construct the bipartite multigraph GA from A
(the number of edges between vertices is equal to the value of
the corresponding entry of A). Find a minimal edge-coloring of
A. Set i← 1.
Step 3. Schedule coarse. For a specific color in the edge-
coloring of GA, construct a switch configuration P (i) from the
edges assigned that color. Set φ(i) ← �T/N� and i ← i + 1.
Repeat Step 3 for the each of the colors in GA.
Step 4. Schedule fine. Find any N non-overlapping switch
schedules P (N+1), . . . , P (2N) and set φ(N+1), . . . , φ(2N)
to �T/N�.

in the example, entry (1, 1) of A contains �16/(T/N)� =
16/(16/4) = 4. The resulting matrix A has row and column
sums ≤ 4, ensuring that it can be edge colored with 4 colors
(Step 2). Then, the edges assigned to each color are converted
to schedules in Step 3. For example, P (1) corresponds to the
subset of edges assigned to color 1 during Step 2. Also, some
of the schedules may not be complete permutations because the
row and column sums of A are less than N , such as P (3) and
P (4), but it is still guaranteed that all the elements of A are
covered. In general, Step 3 creates at most N matchings with
weight �T/N�, for a total weight of approximately T .

Step 4 picks 4 non-overlapping schedules, P (4) through
P (8), and each is assigned a weight of �T/N� = 4. In general,
Step 4 creates the same total weight as Step 3: approximately
T . Therefore the total weight to schedule C(T) using DOU-
BLE is approximately 2T and Smin = 2. The general operation
of DOUBLE is verified in the Appendix.

The required speedup is now simply derived from the weights
assigned by DOUBLE.

Theorem 4: To transmit a general cumulative schedule ma-

trix C(T) in 2N switch configurations Smin = 2 is sufficient
when T is a multiple of N .

Proof: DOUBLE produces 2N switch configurations,
each with a weight of �T/N�. Summing these weights,

2N
⌈
T

N

⌉
= 2T.

Therefore the minimum speedup is sufficient. �
Corollary 3: A speedup of

2T
T − 2δN

is sufficient to schedule C(T) in T slot times when T is a mul-
tiple of N .

Proof: This follows directly from the number of switch-
ings Ns = 2N and the minimum speedup of Smin = 2 required
for DOUBLE. �

V. DISCUSSION

The previous section detailed three algorithms for uncon-
strained switch emulation. Given these algorithms, which is
the most appropriate for a particular system? The answer de-
pends on the relative costs of bandwidth, delay, storage, and the
switching overhead δ in the system.

If the system designer is insensitive to delay and storage re-
quirements, but considers bandwidth expensive, then the EX-
ACT algorithm is most likely an appropriate design choice.
However, exact scheduling can lead to large delays, even with
feasible system parameters. For example, consider a 128 port
switch with 10 Gbit/sec input lines and a 64 byte slot (slot time
of 50ns). Fast MEMS mirror switches are used, which have a
switching time of δ = 200 or 10µs [4]. For exact matching,
Tmin = δNs is approximately 3.2 million slot times or 160ms,
which makes the minimum fixed delay 2T +H equal to 320ms
plus the scheduling time. This delay is obviously unacceptable
for many switching applications.

The minimum switching algorithm MIN greatly reduces the
fixed delay over the exact algorithm, but at the cost of increased

speedup. In our example 128 port switch, MIN reduces the min-
imum fixed delay to 2.5ms, but requires a minimum speedup of
4(4 + log2 N) = 44.

DOUBLE provides a balance between the two other algo-
rithms. For the 128 port switch, a minimum fixed delay of 5ms
and minimum speedup of 2 are necessary. So, compared to
the exact algorithm, a speedup of 2 reduces the fixed delay by a
factor of 128. Alternatively, DOUBLE allows a switching over-
head δ that is 128 times greater than the exact algorithm for the
same fixed delay. Assuming there is a cost benefit in slower
switches, the potential savings from using slower switches may
more than offset the cost required to provide a speedup of 2. A
summary of the costs for each scheduling algorithm is shown
in Table I.

The tradeoffs between the different scheduling algorithms
are represented graphically in Figure 8. Figure 8a shows a
“phase diagram” indicating which algorithm gives the mini-
mum speedup S for particular values of T and N . The regions
partitioned by the lines represent the parameters for which the
labeled algorithm provides the smallest speedup. So, for small
values of T , the MIN algorithm has the smallest speedup be-
cause it is the only algorithm for which T > Tmin. Soon after
T is large enough for DOUBLE to be used, it becomes the al-
gorithm of choice and likewise for the exact algorithm. For
the example of N = 128 and δ = 200, DOUBLE becomes
preferred at approximately T = 53,200 slot times and EX-
ACT provides the lowest speedup at T = 6,400,000 slot times
(marked as circles in Figure 8a). A similar graph is shown in
Figure 8b for the minimum delay T given S and N . As the
speedup passes 2, DOUBLE becomes the favored algorithm,
and at 4(4 + log2 N), MIN is preferred. In the example, DOU-
BLE provides the smallest delay at just beyond S = 2 and MIN
at S = 54.4 (marked in Figure 8b).

VI. RELATED WORK

The time-slot assignment problem has received significant
attention in the context of scheduling satellite-switched time-
division multiple access (SS/TDMA) systems. Notably, algo-
rithms to find exact decomposition of a matrix C in a minimum
number of switch configurations are described in [7]. The idea
of using only N switch configurations was introduced in [8],
where the authors proved the problem of finding the minimum
length schedule for a particular matrix C to be NP-complete.
They also introduced a heuristic algorithm to create the sched-
ules. The SS/TDMA scheduling problem is the same as the
scheduling problem considered in this paper. However, mak-
ing an analogy to packet routing, existing algorithms provide
“best-effort” schedules, where the goal is to minimize the av-
erage schedule length. We demonstrated new algorithms that
solve the same scheduling problem, but have provable worst-
case guarantees necessary for emulation.

More recently, similar problems have been considered in
wavelength-division multiplexing (WDM) systems. Both [13]
and [14] provide heuristic algorithms for scheduling transmis-
sions in star networks given a number of tunable receivers and
transmitters with non-zero tuning latencies. Optimal all-to-all
transmission schedules for the star networks are considered in
[15]. The problems addressed by these researchers are more

broad in that multiple transmitters and receivers per input are
used, but again schedules are chosen to minimize the average
length, not to provide a bounded worst-case.

The impact of constrained switches on packet switch
scheduling has also been addressed. The work of [16] devel-
ops an architecture and several algorithms to guarantee through-
put and delay given a larger data envelope and therefore fewer
logical switch configurations. This work complements our ap-
proach in that we develop techniques to implement a given
number of logical switch configurations in fewer physical con-
figurations, thus reducing the speedup requirements of the
switch.

Also, as noted in both [17] and [18], the task of computing a
schedule for an unconstrained switch is becoming a more diffi-
cult problem as switch sizes scale. Both of these papers provide
solutions to this problem centered around decomposing a traffic
matrix C into permutation matrices and show that the resulting
switch is stable. The algorithms presented in this paper could
readily be applied to this problem, extending the work of [17]
and [18] to switches with non-zero switching overhead. [18]
also notes that the exact scheduling algorithm’s requirement of
O(N2) switch configurations limits scalability and proposes a
multi-stage network to solve the problem. In this case in partic-
ular, the DOUBLE algorithm could also provide scalability for
a speedup of 2.

Finally, this paper only considers schedules in which the re-
configuration of all the ports is simultaneous. However, many
optical switching technologies can have some connections that
remain static and continue to transmit cells while other connec-
tions are reconfigured. This decoupled version of the schedul-
ing problem is equivalent to the open shop scheduling prob-
lem with setup times removed. For switches with three or more
ports, this problem is NP-hard [19]. Some results exist for small
instances of open shops with setup times (see [20] for exam-
ple), but finding algorithms with worst-case bounds on schedule
length for a larger number of ports is left as future work.

VII. CONCLUSION

Optical switching technologies are becoming an attractive al-
ternative to electronic switches as the demand for switch band-
width and port count increase exponentially. However, many
of these optical technologies have a large switching overhead
— requiring from nanoseconds to milliseconds to reconfigure.
Efficient scheduling of these constrained switches requires al-
gorithms that consider this overhead.

We proposed an architecture and algorithms that allow a
constrained switch to exactly emulate an unconstrained switch
within a fixed delay. This decouples the task of accounting for
configuration overhead from the traditional switch scheduling
problem. Constrained switches can then be used directly in de-
signs that can tolerate the fixed delay.

Providing emulation requires scheduling algorithms that
have guaranteed bounds on the length of their schedules. We
analyzed the speedup and delay required for emulation using
three bounded algorithms across a range of port sizes N and
batch sizes T . The EXACT algorithm provides the lowest
speedup requirement, but is only attractive for very large batch
sizes, which are needed to amortize the cost of its quadratic

TABLE I
SUMMARY OF ALGORITHM COSTS (ALSO SHOWN FOR N = 128, δ = 200)

EXACT MIN DOUBLE

Ns N2 − 2N + 2 N 2N
(16,130) (128) (256)

Smin 1 4(4 + log2 N) 2
(1) (44) (2)

Tmin δ(N2 − 2N + 2) δN 2δN
(3,226,000) (25,600) (51,200)

10
1

10
2

10
3

10
1

10
2

10
3

10
4

MIN

DOUBLE

EXACT

Not Feasible

Switch size, N

N
or

m
al

iz
ed

 d
el

ay
, T

/ δ

10
1

10
2

10
3

0

10

20

30

40

50

MIN

DOUBLE

EXACT

Not Feasible

Switch size, N

S
pe

ed
up

, S

(a) Minimum speedup (b) Minimum delay

Fig. 8. Algorithm phase diagrams over the design space

number of configurations, or very low port counts. We devel-
oped the MIN algorithm to use the minimum number of switch-
ings Ns = N , but the speedup required was shown to be pro-
hibitive, Θ(logN). As a result, MIN is only attractive for small
batch sizes, where it is the only algorithm that will work. Alter-
natively, our DOUBLE algorithm balances a small number of
switchings Ns = 2N with a constant speedup of 2. DOUBLE
offers the minimum required speedup across a wide range of N
and T . The resulting family of algorithms provide a range of
speedup versus delay tradeoffs, making emulation feasible over
a large design space.

The work presented here raises many interesting questions
for future study. The three algorithms we have presented repre-
sent three points in the space of Ns versus Rmin. It is interesting
to ask what happens at other points. As we increase Ns from
2N to N2 how rapidly does Rmin fall from 2 to 1? Can a con-
stant Rmin be achieved for an Ns less than 2N? Also, reconsid-
ering the switch scheduling problem as an open shop (Section
VI) may allow a reduction in empty slots for a given number of
configurations. Finally, we only consider guaranteed traffic, but
characterization of average-case performance of the scheduling
algorithms would be useful for switches that can fill extra slots
with best-effort traffic.

ACKNOWLEDGMENTS

The authors would like to thank Balaji Prabhakar for his ini-
tial discussions on this problem and Peter Glynn and Gideon

Weiss for their assistance with open shops. The authors also
thank the reviewers and members of Concurrent VLSI Archi-
tecture group for their helpful comments and suggestions.

REFERENCES

[1] A. Neukermans and R. Ramaswami, “MEMS technology for optical net-
working applications,” IEEE Commun. Mag., pp. 62–69, January 2001.

[2] J.E Fouquet et. al, “A compact, scalable cross-connect switch using total
internal reflection due to thermally-generated bubbles,” in IEEE LEOS
Annual Meeting, Orlando, FL, 1988, pp. 169–170.

[3] L.Y. Lin, “Micromachined free-space matrix switches with submillisec-
ond switching time for large-scale optical crossconnect,” in OFC Tech.
Digest, 1998, pp. 147–148.

[4] O.B. Spahn et. al, “GaAs-based microelectromechanical waveguide
switch,” in Proc. 2000 IEEE/LEOS Intl. Conf. on Optical MEMS, 2000,
pp. 41–42.

[5] A.J. Agranat, “Electroholographic wavelength selective crossconnect,” in
1999 Digest of the LEOS Summer Topical Meetings, 1999, pp. 61–62.

[6] Y. Ito, Y. Urano, T. Muratani, and M. Yamaguchi, “Analysis of a switch
matrix for an SS/TDMA system,” Proc. of the IEEE, vol. 65, no. 3, pp.
411–419, 1977.

[7] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,” IEEE
Trans. Commun., vol. COM-27, no. 10, pp. 1449–1455, 1979.

[8] S. Gopal and C. K. Wong, “Minimizing the number of switchings in a
SS/TDMA system,” IEEE Trans. Commun., vol. 33, pp. 497–501, June
1985.

[9] D.M. Johnson, A.L. Dulmage, and N.S. Mendelsohn, “On an algorithm of
G. Birkhoff concerning doubly stochastic matrices,” Canad. Math. Bull.,
vol. 3, pp. 237–242, 1960.

[10] L. Lovász and M.D. Plummer, Matching Theory, Elsevier Science Pub-
lishers, Amsterdam, The Netherlands, 1986.

[11] A.J. Hoffman and H.W. Wielandt, “The variation of the spectrum of a
normal matrix,” Duke Math. J., vol. 20, pp. 37–39, 1953.

[12] R. Cole and J. Hopcroft, “On edge coloring bipartite graphs,” SIAM
Journal on Computing, vol. 11, pp. 540–546, 1982.

[13] M. Chen and T.-S. Yum, “A conflict-free protocol for optical WDMA
networks,” in Proc. GLOBECOM’91, 1991, pp. 1276–1281.

[14] A. Ganz and Y. Gao, “A time-wavelength assignment algorithm for a
WDM star network,” in Proc. INFOCOM’92, 1992, pp. 2144–2150.

[15] G.R. Pieris and G.H. Sasaki, “Scheduling transmissions in WDM
broadcast-and-select networks,” IEEE/ACM Trans. Networking, vol. 2,
no. 2, pp. 105–110, April 1994.

[16] K. Kar et. al, “Reduced complexity input buffered switches,” in Proc.
Hot Interconnects VIII, 2000, pp. 13–20.

[17] E. Altman, Z. Liu, and R. Righter, “Scheduling of an input-queued switch
to achieve maximal throughput,” Probability in the Engineering and In-
formational Sciences, vol. 14, pp. 327–334, 2000.

[18] C.S. Chang, W.J. Chen, and H.Y. Huang, “Birkhoff-von Neumann input
buffered crossbar switches,” in Proc. INFOCOM’00, 2000, pp. 1614–
1623.

[19] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish
time,” Journal of the ACM, vol. 23, pp. 665–679, 1976.

[20] V.A. Strusevich, “Two-machine open-shop scheduling problem with
setup, processing, and removal times separated,” Computers and Op-
erations Research, vol. 20, pp. 567–611, 1993.

APPENDIX

Two classical results from graph theory are used in the fol-
lowing sections.

Theorem 5: (Hall) For a bipartite graph G = (X ∪ Y,E), a
perfect matching exists if and only if for all non-empty S ⊆ X ,
|S| ≤ |N (S)| where N (S) is the set of vertices adjacent to S.

Theorem 6: (König) There exists an edge-coloring of any bi-
partite multigraph with a maximum degree of ∆ which uses ∆
colors.

A. Correctness of MIN

For simplicity, the MIN algorithm is presented for N ≥ 8
and for this proof of correctness we also assume N is even.

Theorem 7: For a bipartite graph G = (X ∪ Y,E) with
|X| = |Y | = n, there always exists a perfect matching in G
if its minimum degree is greater than n/2.

Proof: Assume no perfect matching exists in the graph.
Then by Hall’s Theorem, there must exist a non-empty S ⊆ X
such that |S| > |N (S)|. Since the minimum degree of G is
greater than n/2, then |S| > |N (S)| > n/2. Also, |X − S| <
n/2.

By definition ofN (S) there are no edges between Y −N (S)
and S. Therefore, for any vertex i ∈ (Y − N (S)), N (i) ⊆
(X − S). This implies |N (i)| ≤ |X − S| < n/2, which
is a contradiction because the degree of i is greater than n/2.
Therefore G contains a perfect matching. �

Theorem 8: For a k-regular bipartite graph G = (X ∪ Y,E)
with |X| = |Y | = n and k > 3n/4, any partial matching M of
G with |M | ≤ n/2 is a subset of a perfect matching of G.

Proof: Construct a copy of G in G′. For each edge in
M , remove the edge, its endpoints, and edges incident to those
endpoints from G′. This leaves 2(n−|M |) vertices in G′. Also,
each removal reduces the degree of the remaining vertices of G′

by at most one. Therefore, the minimum degree of the remain-
ing vertices of G′ is at least k − |M |.

By Theorem 7, there is a perfect matching in G′ if k−|M | >
(n− |M |)/2, or rewriting, that |M | < 2k− n. From the Theo-
rem statement, |M | ≤ n/2 = 2(3n/4)− n < 2k − n, so there
is a perfect matching M ′ in G′. If a vertex in G was not covered
in the partial matching M , it was included in G′ and must be

covered in the perfect matching M ′. Therefore M ∪M ′ is a
perfect matching of G and M is a subset of this matching. �

Now the correctness of MIN can be examined step-by-step.
Step 1 simply initializes the algorithm. Step 2 identifies all
edges greater than T/d that have yet to be scheduled. The row
(column) sums of A are less than d. Otherwise, the correspond-
ing row (column) of C would be greater than (T/d)d = T ,
which is a contradiction because the row (column) sums of C
are at most T . The graph GA constructed in Step 3 has a maxi-
mum degree of at most d−1 because the row (column) sums of
A are less than d. Then, by König’s Theorem, GA can always
be edge colored with d− 1 colors.

Now that all the edges have been identified in Step 2 and col-
ored in Step 3, Step 4 loops over d−1 colors, which is sufficient
to visit each of the colors assigned to GA. In Step 4a, half of
the edges of a particular color are used as a partial matching in
B. Since N is assumed to be even, �|Mc|/2� is at most N/2.
By Theorem 8, Step 4a finds a perfect matching of GB that in-
cludes Ea if GB is k-regular with k > 3N/4. Regularity is
enforced by the fact that only perfect matchings are removed
from B throughout the algorithm. The condition on k is ver-
ified below. Also, it is possible that some of the edges in Ea

were scheduled, and hence removed, since the coloring in Step
3. This is handled by simply removing these edges from Ea,
which can only reduce |Ea|, ensuring the conditions of Theo-
rem 8 still hold. Again, since N is even, there are at most N/2
edges remaining in Mc for Step 4b, so another perfect match-
ing can be found. Therefore, Steps 4a and 4b together ensure
that all the edges in GA assigned to a particular color will be
scheduled. Since this process is repeated over all the colors, all
the edges in GA will be scheduled during Step 4.

Once Step 5 is reached, all the entries greater that T/d have
been scheduled during Step 4. So, during the next iteration, no
entry will be greater than 2T/d (d has been updated in Step
5), which ensures the weight assigned to the schedules during
Steps 4a, 4b, and 6 are sufficient to cover the corresponding
elements of C. Also, since 2(d − 1) additional schedules are
produced in each loop, the loop condition during Step 5 ensures
the above constraint on k is met. Finally, the Step 6 extracts the
remaining perfect matchings from B, which are guaranteed to
exist because GB is regular.

B. Correctness of DOUBLE

The row (column) sums of A, created in Step 1, are at most
N : ∑

j

ai,j =
∑

j

⌊ ci,j
T/N

⌋
≤

∑
j ci,j

T/N
= N.

So, by König’s Theorem, the edge-coloring produced during
Step 2 uses at most N colors. Step 3 then produces at most N
schedules, using all the edges in A exactly once. Finally, Step
4 covers every entry uniformly using N more schedules, for a
total of at most 2N schedules. Any entry (i, j) is covered ai,j

times in Step 3 and once more in Step 4:

(ai,j+1)�T/N� = (
⌊ ci,j
T/N

⌋
+1)�T/N� ≥ ci,j

T/N
(T/N) = ci,j .

So, the schedules produced by DOUBLE cover every element
of C.

