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ABSTRACT
This paper presents an algorithm to find a worst-case traffic pat-
tern for any oblivious routing algorithm on an arbitrary intercon-
nection network topology. The linearity of channel loading offered
by oblivious routing algorithms enables the problem to be mapped
to a bipartite maximum-weight matching, which can be solved in
polynomial time for most practical routing functions. Finding exact
worst-case performance was previously intractable, and we demon-
strate an example case where traditional characterization techniques
overestimate the throughput of a particular routing algorithm by
47%.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Routing and Layout; C.1.2
[Processor Architectures]: Multiple Data Stream Architectures—
Interconnection architectures

General Terms
Algorithms, Performance

Keywords
Oblivious routing, worst-case throughput, interconnection networks

1. INTRODUCTION
As interconnection networks are applied to throughput-sensitive

applications, such as packet routing [7] and I/O interconnect [3],
the worst-case behavior of a routing function becomes an important
design consideration. Specifically in the packet routing application,
little can be said about the incoming traffic patterns, and there is no
path for backpressure to slow the flow of incoming packets. There-
fore, the guaranteed throughput of the router is bounded by the
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worst-case throughput over all traffic patterns. Obviously, a sys-
tem designer would like to be able to characterize this worst-case
situation.

This paper presents an efficient technique for finding an exact
worst-case pattern for any oblivious routing function on an arbi-
trary network topology (Section 3). By exploiting the linearity of
oblivious routing functions, finding the worst-case traffic pattern is
cast as the maximum-weight matching of a bipartite graph. Using
this construction, exact worst-case results can be found in polyno-
mial time for all deterministic routing functions and for most ran-
domized routing functions. For cases where the number of routing
states is non-polynomial in the size of the network, the construction
of the exact bipartite graph can also be non-polynomial. In this sit-
uation, the worst-case can still be estimated. The worst-case pattern
is then used to determine the worst-case throughput of a particular
system.

This approach offers a significant improvement in accuracy over
existing techniques used to estimate the worst-case. Previous stud-
ies of routing algorithms generally chose “bad” traffic patterns that
the authors felt represented worst-case or near worst-case behav-
ior [5, 12]. However, for the example presented in Section 5, the
traditional techniques overestimate the worst-case throughput of
the ROMM routing algorithm [12] by approximately 47%. Worst-
case characterization has also been approached from a theoretical
perspective [1, 6, 9, 11]. Despite providing strong results, these
analysis do not provide exact throughput values for specific topolo-
gies and routing algorithms. With the algorithms presented in this
paper, we hope to enable more quantitative studies of oblivious
routing algorithms in the future.

2. PRELIMINARIES

2.1 Network model
The interconnection networks discussed in this paper have an

arbitrary topology and are represented by a directed graph (N, C),
where the set of vertices N and the set of edges C correspond to
nodes and channels of the network, respectively.1 Fixed length data
units are assumed and are referred to as packets, but any fixed size
network unit, such as flits or cells, is equivalent.

To simplify the analysis and isolate our results from any particu-
lar flow-control or packet scheduling scheme, the ideal throughput
of our network is determined completely by edge congestion —
the system is assumed to be stable, if for every channel, the aver-
age number of packets which need to cross that channel is less than
the bandwidth of the channel. If the number of packets which need
to cross a channel meets or exceeds a channel’s bandwidth, this
1For convenience, any set used in the scalar sense refers to the size
of that set.



channel is saturated. This is obviously an upper bound on the per-
formance of any practical network. As discussed in [2], this upper
bound is achievable with output queuing in each node router, large
queues, a simple scheduling protocol, and a burstiness constraint on
the incoming traffic process. Practical systems can typically reach
60-75% of this bound [13].

Since the channels in interconnection networks are usually shared
between many nodes, the worst-cast throughput is generally less
than the full injection rate of the nodes. This leads to two different
definitions of throughput, which we refer to as balanced and un-
balanced. In both cases, we characterize the worst-case throughput
as the maximum injection rate per traffic source that is guaranteed
to be stable. The cases are distinguished by how the injected traf-
fic is distributed across the destinations. For the balanced case, the
ejection rate at each node is equal to the injection rate — the traffic
is evenly distributed and both the rows and columns of the corre-
sponding traffic matrix (Section 2.2) sum to the same rate. The un-
balanced case loosens this restriction and the rate destined to each
node is only bounded by the node’s maximum ejection rate — rows
of the traffic matrix sum to the injection rate, while column sums
must only be less than one. While both definitions have utility, this
paper only considers the balanced case. A typical application of
the worst-case, balanced throughput of a system would be to char-
acterize the amount of speedup a system requires (increase in chan-
nel bandwidth relative to the injection rate) to ensure a worst-case
throughput equal to the maximum injection rate.

2.2 Definitions

• traffic matrix (Λ) - Any N×N doubly-substochastic2 matrix
where entry λi,j represents the fraction of traffic traveling
from source i to destination j.

• permutation matrix (P ) - A traffic matrix with a single 1 en-
try in each row and column.

• oblivious routing algorithm (π) - A routing algorithm that
is only a function of the source and destination nodes of a
packet. Oblivious routing algorithms can also be randomized
([8], pp. 121).

• channel load (γc(π, Λ)) - The expected number of packets
that cross channel c per cycle for the traffic matrix Λ and
routing function π.

• pair channel load (γc(π)i,j) - The expected number of pack-
ets that cross channel c per cycle when routing algorithm π
sends a packet from source i to destination j each cycle.

• maximum channel load (γc,max(π)) - The maximum load on
channel c over all doubly-stochastic traffic matrices.

• worst-case ideal throughput (Θ ideal,wc(π)) - The expected amount
of bandwidth available to a packet crossing the worst-case
channel. For unit injection bandwidth,

Θideal,wc(π) = min
c∈C

[bc/γc,max(π)] .

To prevent the worst-case channel from saturating, the injec-
tion bandwidth of each node sharing the channel is scaled so
that the average number of requests per cycle is equal to the
channel’s bandwidth bc.

2A doubly-substochastic matrix has row and column sums of at
most one, while a doubly-stochastic matrix has row and column
sums of exactly one.

• isomorphic graphs - Two graphs G and H are isomorphic if
there exists a labeling function such that a relabeling of the
vertices of G yields a graph identical to H .

• automorphism - Any isomorphic labeling of a graph onto it-
self.

• edge-symmetric graph - A graph G is edge-symmetric if for
every pair of edges u and v, there exists an automorphism on
G that maps u to v.

3. FINDING THE WORST-CASE
Since we are interested in measuring the stable throughput of

a network, none of the channels can be saturated. This allows
their linearity of channel loading to be exploited. Linearity im-
plies that the load on a particular channel is simply the sum of
the loads caused by each source-destination pair. This fact can
be used to constrain the search for worst-case patterns to permuta-
tion matrices. Then, by representing all permutations as matchings
within a single bipartite graph and weighting the edges of the graph
with source-destination channel loads, a maximum-weight match-
ing yields the exact worst-case permutation for a particular channel
and its corresponding load. Finally, the maximum-weight match-
ing is repeated over the set of all channels in the network to find the
worst-case ideal throughput.

3.1 Linearity of channel loading
The key to finding the worst-case of oblivious routing functions

is to take advantage of their linearity of channel loading. By mak-
ing mild assumptions on the incoming traffic and routing processes,
the net channel load can be written as a linear combination of indi-
vidual source-destination contributions to this load.

First, the average load on a particular channel c can be expressed
using a set of random processes: A(t)i,j is 1 if a packet is injected
at node i destined for node j at time t, and Rc(π, t)i,j is 1 if the
oblivious routing function π uses channel c as part of a route from
node i to node j at time t. Both functions are zero otherwise. Let
the system begin at an arbitrary time t = 0 and then the time aver-
age load on channel c is

γc(π, Λ) = lim
n→∞

[
1

n

n−1∑
t=0

∑
i,j

A(t)i,jRc(π, t)i,j

]

as long as channel c is not saturated. If each of arrival and routing
processes are then assumed to be stationary and ergodic and all of
the arrival processes are independent of all of the routing processes,
then

γc(π, Λ) = E

[∑
i,j

A(t)i,jRc(π, t)i,j

]

=
∑
i,j

E [A(t)i,j ] E [Rc(π, t)i,j ]

=
∑
i,j

λi,jγc(π)i,j .

An example of this property is shown in Figure 1.

3.2 Narrowing the search to permutation
traffic

Using the linearity results of the previous section, the set of traf-
fic patterns that must be examined is narrowed to permutation traf-
fic.
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Figure 1: An example of two independent contributions to
channel c’s load. One packet is being sent from node x to node
y, crossing channel c. Another packet is sent from node u to
node v and also uses channel c. Both of these routes contribute
a load of one packet per cycle across channel c. Because none
of the channels in the network are saturated, the net load on
channel c is simply 2 packets per cycle.

We are interested in finding a traffic matrix with the smallest
row and column sums that loads any channel in the network to that
channel’s bandwidth. Focusing on a single channel c, assume that a
doubly-stochastic traffic matrix Λ (row and column sums of exactly
one) maximizes the channel load on c. Then, by definition

γc(π, Λ) = γc,max(π).

The traffic matrix Λ may not correspond to a realizable channel
load because the channel could have saturated at bc < γc,max. How-
ever, the traffic pattern can be “scaled back” to a feasible solution:

γc

(
π,

bcΛ

γc,max(π)

)
= bc.

THEOREM 1. The scaling factor bc/γc,max(π) is the smallest
fraction of the injection rate needed to saturate channel c.

PROOF. Assume a scaling factor α < bc/γc,max(π) saturates
channel c for some doubly-stochastic traffic matrix Λ:

γc(π, αΛ) = bc.

Applying linearity and substituting,

α =
bc

γc(π, Λ)
<

bc

γc,max(π)
.

Then γc,max(π) < γc(π, Λ), which is a contradiction. So, bc/γc,max(π)
is the smallest fraction of the injection rate needed to saturate c.

This result allows the search for worst-case traffic patterns to be
restricted to doubly-stochastic matrices, which can be strengthened
further to include only permutation matrices.

THEOREM 2. For any oblivious routing function π, a permuta-
tion matrix can always load a channel c as heavily as a doubly-
stochastic traffic matrix Λ.

PROOF. Assume that Λ gives a throughput lower than any per-
mutation matrix. This implies Λ loads channel c more heavily
than any permutation. By the result of Birkhoff [4], any doubly-
stochastic traffic matrix Λ can be written as a weighted combina-
tion of permutation matrices:

Λ =
n∑

i=1

φiPi, s.t.
n∑

i=1

φi = 1.

γc (π)0,0

γc (π)1,1

γc (π)N-1,N-1
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Figure 2: Construction of the bipartite graph for finding chan-
nel load due to a particular permutation. A perfect match-
ing (bold edges) and its corresponding permutation P are also
shown. The rows (columns) of P correspond to the source
(destination) nodes of the bipartite graph. As an example, the
matching’s edge from source node 0 to destination node 1 cor-
responds to the 1 in entry (0, 1) of the permutation matrix.

A permutation P ∗ is found such that

P ∗ = argmax
P∈{P1,...,Pn}

γc(π, P ).

The corresponding total load on c can be written using linearity:

γc(π, Λ) =
n∑

i=1

φiγc(π, Pi)

≤
n∑

i=1

φiγc(π, P ∗) = γc(π, P ∗).

P ∗ loads channel c at least as heavily as Λ, but this is a contra-
diction. Therefore, a permutation matrix can always give the same
load on c as a doubly-stochastic traffic matrix.

Using these two theorems, worst-case traffic patterns can be found
by first searching all permutation matrices while momentarily ig-
noring the feasibility of the solutions. Then, the permutation ma-
trix that most heavily loads a channel is scaled to account for the
actual channel bandwidth, and the scaling factor gives the smallest
fraction of injection bandwidth needed to saturate that channel.

3.3 Bipartite graph representation
A bipartite graph can be used to represent the load on a single

channel due to any particular permutation. For our graph, the first
set of N nodes are used to represent packet sources and the sec-
ond set of N nodes represent the packet destinations. Edges are
added between every source and destination node for a total of N2

edges, as shown in Figure 2. There is a one-to-one correspondence
between permutation matrices and perfect matchings3 of this bipar-
tite graph. Also, note that this graph’s structure is unrelated to the
topology of the underlying interconnection network.

The graph’s construction is finished by weighting each edge from
source node s to destination node d with the amount of load con-
tributed to a particular channel c when packets are routed from
s to d, which is γc(π)s,d (Figure 2). Techniques for finding the

3A perfect matching is a subset of the graph edges such that each
node is incident with exactly one edge in the subset.



edge weights are discussed in Section 3.5. Using these weights, the
amount of load due to a specific permutation is just the sum of the
edge weights in its corresponding bipartite matching. This sum is
called the weight of that matching.

3.4 Maximum-weight matching
Given the bipartite construction from the previous section, a maximum-

weight matching of the graph is found. From the correspondence
between matchings and permutations, finding a maximum-weight
matching is equivalent to evaluating

γc,max(π) = max
P∈P

γc(π, P ),

where P is the set of all permutation matrices. By repeating this
operation over all the channels, the ideal worst-case throughput can
be determined:

Θideal,wc(π) = min
c∈C

[bc/γc,max(π)] ,

where C is the set of channels. An O(N3) maximum-weight match-
ing algorithm exists [10], and therefore, finding the worst-case chan-
nel load requires O(CN3) time. For typical fixed-degree networks,
such as tori or meshes, the size of C is proportional to N and the
run time is O(N4). The maximum size of C is N2, corresponding
to a fully-connected network, which bounds the time of the overall
algorithm to O(N5). So, by exploiting the linearity of oblivious
routing functions, the problem of examining all N ! permutations
has been reduced to a polynomial-time algorithm.

3.5 Computing Edge Weights
A straightforward approach to computing the edge weights for

the bipartite graph is to exhaustively examine all paths for each
source-destination pair (s, d). This exhaustive approach enumer-
ates each path from s to d generated by the routing function and
sums the probability of each of these paths that includes the channel
c to compute the edge weight γc(π)s,d. While this approach yields
exact edge weights, some practical, randomized routing functions
generate a number of paths that is larger than polynomial.

The problem of a non-polynomial number of paths can be ad-
dressed by first expressing an oblivious routing function incremen-
tally, where routes are constructed by evaluating the routing func-
tion R at the current location of the packet to determine the next
hop for that packet:

R : S×N �→ P(S×N).

N represents the current location of a packet and S is the set of
routing states. A routing state is simply information associated
with a packet so that its path may be constructed incrementally and,
as shown, the routing state can be updated at each hop of a route.
If the routing function is randomized, its output is a set of possi-
ble state-node pairs (denoted by the power set P), one of which is
randomly selected.

So, for example, consider a routing algorithm that randomly chooses
a dimension traversal order. A particular traversal order for each
packet can be chosen at the source node and stored in the routing
state of that packet. By also storing the destination of the packet
as part of its state, the entire path can be constructed incrementally.
Viewed another way, the routing state of a packet differentiates it
from other packets that could pass through a common intermedi-
ate node. Conversely, partial paths that intersect at the same node
with the same routing state can continue as a single path with a
probability equal to the sum of the combined paths.

Each routing state-node pair is represented as a vertex labeled
with that pair in a routing state-node transition graph T . Directed

edges in the graph indicate a non-zero transition probability from
one state-node pair to another. For each edge from vertex v1 to
vertex v2, the function E(v1, v2) is the probability of a transi-
tion from v1 to v2. The graph T and the probability function E
are constructed by visiting each state-node pair (t, n) and evalu-
ating R(t, n). For each element (u, m) ∈ R(t, n), an edge is
added to T from vertex (t, n) to vertex (u, m) and given proba-
bility E((t, n), (u, m)) = 1/|R(t, n)|.

An example construction is shown for an oblivious routing func-
tion 5TURNS for the two-dimensional mesh. The 5TURNS func-
tion allows any minimal path from a source to destination that con-
tains less than five turns from one dimension to the other with pack-
ets always starting in the x dimension. A portion of the incremental
routing function is

R(t, x, y) =




{(0, x + 1, y),

(1, x, y + 1)}
if t = 0, dx > x,

and dy > y,

{(1, x, y + 1),

(2, x + 1, y)}
if t = 1, dx > x,

and dy > y,

. . .

where the routing state t is the number of turns, (x, y) is the packet’s
current location, and (dx, dy) is the destination node. Since we
only consider one source-destination pair in isolation when finding
edge weights, the destination is constant and does not need to be
included as part of the packet’s state. Several example paths gener-
ated by 5TURNS for a particular source-destination pair are shown
in Figure 3a with the current number of turns (routing state) la-
beled along each path. Part of the corresponding graph T is shown
in Figure 3b.

Once T has been constructed, the probability of a given path
visiting each node is calculated. For a particular state-node pair
(t, n), the probability of visiting that pair V (t, n) is the sum of
the probabilities of transitioning from each predecessor times that
predecessor’s probability, or

V (t, n) =
∑
u∈S

∑
m∈N

V (u, m)E((u, m), (t, n)).

This recursive formulation is initialized using the source node s and
the initial state t0 and setting V (s, t0) = 1. Then, there will always
exist a vertex in the graph whose predecessors’ probabilities have
already been computed if T is acyclic. This is guaranteed if the
underlying routing function is acyclic (a path cannot revisit a node).
Given the vertex probabilities, the load on a channel c = (x, y) is
the sum of visiting that channel over all possible routing states

γ(x,y)(π)s,d =
∑
u∈S

∑
t∈S

V (t, x)E((t, x), (u, y)).

Constructing T requires visiting each of the NS state-node pairs
and computing the output set of the routing function. The output
set has at most NS elements4, so the overall time for constructing
T is O(N2S2). Then T is traversed to calculate the actual channel
loads, visiting each edge once to compute V and again to compute
the channel loads, which again requires O(N2S2) time. So, for
an acyclic, oblivious routing function with a polynomial number of
routing states in N , the channel loads, and therefore edge weights,
can be computed in polynomial time.

4For simplicity, we assume each element of a routing function’s
output set is computed in constant time. This computation time
could be a function of S and N , but would still be polynomial for
practical systems.
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Figure 3: An example of path combining for the 5TURNS routing function. (a) Three possible paths from (0,0) to (3,2) are shown
and are labeled with their current state (number of turns). (b) The corresponding routing state-node transition graph shows two of
the paths being combined at a single state-node vertex, while the third path is not combined because it has taken more turns.

While it is possible to have a non-polynomial number of states,
using the routing-state node transition graph to compute edge weights
does have advantages over evaluating all paths. For example, the
routing function that randomly selects between all minimal paths
has a number of paths that is greater than polynomial in N . How-
ever, this routing function can be expressed incrementally where
the only state necessary is the destination node. This allows the
edge weights to be computed in polynomial time.

For routing functions with a very large number of paths and rout-
ing states, an edge weight can still be accurately approximated by
choosing a random sample of the paths from s to d generated by
the routing function and summing the contribution of the paths that
include c to compute the weight. The contribution in this case is
the probability of all of the paths represented by the sample.

4. SYMMETRY OPTIMIZATIONS
While the algorithms presented in Section 3 generally run in

polynomial time, the large powers of N can still restrict the practi-
cal size of networks that can be analyzed. In this section, we present
a framework to reduce the number of channels examined for the
worst-case for networks with either full or partial symmetry. Also,
for a class of routing functions in fully symmetric networks, a re-
duction in the time required to the find edge weights of the bipartite
graph is shown.

4.1 Symmetry
Previously, no assumptions were made about the underlying topol-

ogy of the interconnection network. However, by exploiting the
symmetry of a network, the number of channels examined to find
the worst case can be greatly reduced. In fact, for a completely
edge-symmetric topology and edge-symmetric routing function, only
a single channel needs to be considered.

To take advantage of symmetry, a set of focus channels F is
formed so that for every channel c in the interconnection network,
there exists an automorphism g that maps c into f such that f ∈ F .
The automorphism must also maintain symmetry in the channel
bandwidth and the routing function, so that bc = bf and γc(π)i,j =
γf (π)g(i),g(j) for every source-destination pair (i, j).

For example, consider the 4,3-ary 2-cube shown in Figure 4,
which is partially symmetric. The channel from node (0, 0) to

2,2

3,12,11,10,1

0,2 1,2 3,2

1,00,0 3,02,0

g(x,y) = (2-x,y-1)

h(x,y) = (x-3,y-2)

Figure 4: A 4,3-ary 2-cube where the channels from (0,0) to
(0,1) and from (0,0) to (1,0), which are shown in bold, form
the focus set. Two automorphisms, g and h, that map other
channels into the focus set are also shown.

(1, 0) and the channel from (0, 0) to (0, 1) form a focus set, as-
suming symmetry in the channel bandwidth and routing function is
also preserved. The figure also shows two automorphisms, g and
h, that map particular channels to the focus set.

Now, instead of considering all of the channels for the worst-case
load, only the channels in F are considered.

THEOREM 3. Given a topology, oblivious routing function π,
and their focus channel set F , at least one channel in F saturates
at a throughput at or below any channel not in F .

PROOF. Assume there is a channel c /∈ F , which saturates at
a rate lower than any channel in F . By definition of the focus
set, there exists an automorphism g that maps c to an element
f ∈ F where bc = bf . So, for c to saturate at a lower through-
put than f , γc,max(π) > γf,max(π). Let P be a permutation such
that γc(π, P ) = γc,max(π). Construct a new permutation P ′ where



P ′
g(i),g(j) = Pi,j . Then,

γf (π, P ′) =
∑
i,j

p′
i,jγf (π)i,j =

∑
i,j

p′
g(i),g(j)γf (π)g(i),g(j)

=
∑
i,j

pi,jγc(π)i,j = γc,max(π).

This implies that γf,max(π) ≥ γc,max(π), which is a contradiction.
Therefore, a focus channel can always be saturated at a throughput
at or below a non-focus channel.

Using this result, the worst-case throughput can be expressed as

Θideal,wc(π) = min
f∈F

[bf/γf,max(π)] .

This implies |F | maximum-weight matchings are required to find
the ideal worst-case throughput. Many common topologies, most
notably the torus, are edge-symmetric. Completely edge-symmetric
oblivious routing functions are less common, but routing functions
can often be represented with a small focus set. For example, only
two focus channels are needed to find the worst-case for dimension-
order routing on the two-dimensional torus, which reduces the run
time to O(N3).

4.2 Relative routing
For a designer to use maximum-weight matchings to determine

the worst-case permutation the edge weights γc(π)i,j must be de-
termined. For a general routing function π, each source-destination
pair must be considered to determine its contribution to the load on
the focus channel(s). In an implementation, determining the edge
weights often dominates the overall run-time for practical size net-
works.

However, if the topology is edge-symmetric, it is common for an
oblivious routing function to be relative or position-independent.
That is, the input to the routing function can be a “vector” that
points from the source to destination. Then the paths a packet
takes from the source to destination only depend on their relative
placement in the network. For example, dimension-order routing
in a torus is a relative routing function. As shown in Figure 5, a
route from (0, 0) to (1, 1) follows the same relative path as a route
from (1, 2) to (2, 0). So, the dimension order routing function only
needs the vector (1, 1) to determine the paths in this example.

A relative routing function can be exploited to decrease the num-
ber of source-destination pairs considered to find all the required
edge weights. If π is a relative routing function, for a given source-
destination pair (i, j) and a focus link from node u to node v,

γ(u,v)(π)i,j = γ(u+k,v+k)(π)i+k,j+k,

where k ∈ {0, . . . , N − 1}. Finding the load on all channels in
the network due to a particular source-destination pair does require
an increase in storage proportional to the number of channels, but
little additional work since complete paths for the routing functions
are already being evaluated. So, by using the fact that the routing
function is relative, a single source-destination pair (i, j)’s loading
of all channels can be used to determine N loadings of a focus
channel for the source-destination pairs (i + k, j + k), where k ∈
{0, . . . , N − 1}. This reduces the total number of pairs considered
to N compared to N2 for a non-relative routing function.

5. EXPERIMENTS
As an illustration of the importance of finding exact worst-case

permutations, a comparison of two minimal, oblivious routing al-
gorithms is presented for a 2-dimensional torus network (k-ary
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0,2 1,2

1,00,0 2,0

Figure 5: Relative routing example in a symmetric 3-ary 2-
cube. Both paths (shown in bold) move in the same pattern
— one hop to the right, then one hop down.

s

d
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i

Figure 6: Example dimension-order (solid line) and ROMM
routes (dashed lines)

2-cube)5. The first algorithm is dimension-order routing (DOR).
DOR deterministically routes a packet completely in the first di-
mension before routing in the second. An example dimension-
order route from source s to destination d is shown as a solid line
in Figure 6.

The second algorithm is the two-phase variant of the randomized
algorithm (ROMM) described in [12]. ROMM routes a packet from
source to destination by uniformly choosing a random intermediate
node within the minimal quadrant. The minimal quadrant is the
set of nodes along any minimal length path between the source and
destination. The packet then uses DOR, but with a randomized
order of dimension traversal, from the source to intermediate and
repeats the same algorithm from the intermediate to the destination.
Two example ROMM routes, which use intermediate nodes i and j
respectively, are shown in Figure 6 as dashed lines.

Compared to DOR, where all traffic between a source-destination
pair is concentrated along a single path, ROMM more evenly dis-
tributes a source-destination pair’s traffic across a larger number
of channels. From this qualitative description of the behavior of
ROMM and based on the discussion presented in [12], one might

5Only odd values of k are considered to simplify the explanation
of the worst-case, but even values of k follow the same trends



Figure 7: Tornado traffic pattern for k = 5

Table 1: Ideal throughput of DOR and ROMM over several
patterns on an 9-ary 2-cube (fraction of network capacity)

Pattern DOR ROMM

Uniform 1 1
Bit-complement 0.556 0.362

Transpose 0.278 0.556
Tornado 0.278 0.278

Worst of 104 permutations 0.278 0.255
Worst-case 0.278 0.173

expect that ROMM would have better worst-case performance than
DOR.

To test this intuition, the performance of these two algorithms
was compared against uniform random traffic and two permutations
that are typically relied upon to demonstrate poor performance [5,
12]: bit-complement and transpose. The tornado pattern was also
considered, where each node sends packets (k − 1)/2 hops to the
right in the lowest dimension (Figure 7). In addition to these pat-
terns, a trial of 104 random permutation matrices was generated and
the worst-case throughput for both algorithms over the 104 permu-
tations was determined. As shown in Table 1, ROMM generally
performed as well as DOR on these conventional metrics.

Next, the algorithm presented in Section 3 was used to deter-
mine the worst-case for both DOR and ROMM (Table 1). Both al-
gorithms are relative routing functions and benefit from symmetry
optimizations: only one channel in the X and Y dimensions needed
to be considered. This reduced the the time required to compute the
worst-case to O(N3). All calculations were performed using inte-
ger arithmetic and the worst-case results are exact. Values shown in
the table have be rounded to three significant digits. The worst-case
of DOR matched the result of 0.278 of capacity found in the ran-
dom permutations. However, ROMM’s exact worst-case of 0.173
was significantly less — only 62.3% of DOR’s worst-case through-
put.

The reason for ROMM’s lower worst-case throughput is illus-
trated by constructing an adversarial traffic pattern. In ROMM, the
tornado pattern in a single row gives the same loading as DOR.
However, because ROMM routes through the minimal quadrant,
and not just around the edges as DOR does, source-destination pairs
in other rows can add additional load to channels in the tornado row,
reducing the throughput of ROMM below that of DOR. An exam-
ple of this is shown in Figure 8 and a worst-case permutation for
ROMM is shown in Figure 9.

A further comparison of the worst-cases of ROMM and DOR
on k-ary 2-cubes showed that as k increases beyond 9, DOR ap-
proaches approximately 0.26 of capacity, while ROMM approaches
0.14 or about half that of DOR. So, although ROMM might qual-
itatively seem to be a more “balanced” routing algorithm, these
experiments show that simple DOR has superior worst-case per-
formance on k-ary 2-cubes. This result was not immediately ob-
vious from applying standard traffic patterns or searching a large

Tornado
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Figure 8: Adversarial pattern for ROMM. Only the nodes in
the middle row (dashed box) run the tornado traffic pattern,
which loads c the same amount as in DOR’s worst-case. How-
ever, because ROMM routes through the minimal quadrant,
additional load can be placed on c by sending traffic from nodes
outside the middle row. For example, the minimal quadrant of
nodes x and y contains c, so sending traffic from x to y increases
c’s load beyond that of DOR.
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(4, 0) (4, 6) (4, 7) (4, 8) (8, 8) (6, 7) (4, 1) (4, 2) (4, 3)

(0, 0) (6, 0) (6, 6) (7, 1) (6, 5) (8, 2) (1, 5) (0, 4) (5, 4)

(6, 8) (7, 0) (5, 6) (8, 1) (5, 5) (0, 3) (5, 3) (1, 4) (6, 4)

(5, 8) (8, 0) (0, 6) (0, 2) (5, 2) (4, 5) (6, 3) (2, 4) (7, 4)

(7, 8) (0, 1) (5, 1) (8, 5) (6, 2) (3, 5) (7, 3) (3, 4) (8, 4)

(5, 0) (7, 6) (6, 1) (7, 5) (7, 2) (2, 5) (8, 3) (4, 4) (0, 5)

(1, 0) (1, 6) (1, 7) (1, 8) (0, 8) (5, 7) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 6) (2, 7) (2, 8) (8, 7) (0, 7) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 6) (3, 7) (3, 8) (7, 7) (8, 6) (3, 1) (3, 2) (3, 3)


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Figure 9: Worst-case permutation for ROMM on a 9-ary 2-
cube. Entry (i, j) of the matrix denotes the destination node of
the source on row i column j.

set of random permutations, showing the practical benefit of the
maximum-weight matching approach.

6. CONCLUSIONS
In this paper, we presented an algorithm that can find the worst-

case throughput of most oblivious routing algorithms in polynomial
time, which makes worst-case analysis tractable. Additionally, a
comparison of two minimal routing algorithms illustrated that in-
tuition, difficult traffic patterns, and random sampling of permuta-
tions do not necessarily provide an accurate view of the worst-case
performance of a particular routing algorithm. These traditional ap-
proaches poorly characterized the worst case of the ROMM algo-
rithm [12], overestimating the throughput by approximately 47%.

An interesting open question is whether similar worst-case re-
sults can be determined for adaptive routing algorithms. While
the class of all adaptive algorithms may not be amenable to such
a analysis, we conjecture that particular adaptive algorithms can be
designed that do have quantifiable worst-case throughput and are
provability better than oblivious algorithms.

Finally, we hope the techniques presented in this paper will be
a useful tool in the design and quantitative comparison of routing
algorithms. Moreover, using the bipartite graph construction to an-
alyze oblivious routing algorithms may prove to be a powerful tech-
nique for finding optimal worst-case routing algorithms.
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