
Worst-case Traffic for Oblivious Routing Functions
Brian Towles and William J. Dally

Department of Electrical Engineering
Stanford University

{btowles,billd}@cva.stanford.edu

Abstract— This paper presents an algorithm to find a worst-case traffic
pattern for any oblivious routing algorithm on an arbitrary interconnec-
tion network topology. The linearity of channel loading offered by obliv-
ious routing algorithms enables the problem to be mapped to a bipartite
maximum-weight matching, which can be solved in polynomial time for
routing functions with a polynomial number of paths. Finding exact worst-
case performance was previously intractable, and we demonstrate an ex-
ample case where traditional characterization techniques overestimate the
throughput of a particular routing algorithm by 47%.

Keywords—oblivious routing, worst-case throughput

I. INTRODUCTION

As interconnection networks are applied to throughput-
sensitive applications, such as packet routing [1] and I/O inter-
connect [2], the worst-case behavior of a routing function be-
comes an important design consideration. Specifically in the
packet routing application, little can be said about the incoming
traffic patterns, and there is no path for backpressure to slow the
flow of incoming packets. Therefore, the guaranteed throughput
of the router is bounded by the worst-case throughput over all
traffic patterns. Obviously, a system designer would like to be
able to characterize this worst-case situation.

This letter presents an efficient technique for finding an exact
worst-case pattern for any oblivious routing function on an ar-
bitrary network topology (Section III). By exploiting the linear-
ity of oblivious routing functions, finding the worst-case traffic
pattern is cast as the maximum-weight matching of a bipartite
graph. Using this construction, the problem is generally solved
in polynomial time, quickly yielding exact worst-case results.
For cases where the number of paths is non-polynomial in the
size of the network, the construction of the exact bipartite graph
can also be non-polynomial. In this situation, the worst-case
can still be estimated (Section III-B). The worst-case pattern is
then used to determine the worst-case throughput of a particular
system.

This approach offers a significant improvement in accuracy
over existing techniques used to estimate the worst-case. Pre-
vious studies of routing algorithms generally chose “bad” traf-
fic patterns that the authors felt represented worst-case or near
worst-case behavior [3][4]. However, for the example pre-
sented in Section IV, the traditional techniques overestimate
the worst-case throughput of the ROMM routing algorithm [3]
by approximately 47%. Worst-case characterization has also
been approached from a theoretical perspective [5][6][7]. De-
spite providing strong results, these analyses do not provide ex-
act throughput values for specific topologies and routing algo-

This work has been supported by an NSF Graduate Fellowship with supple-
ment from Stanford University and under the MARCO Interconnect Focus Re-
search Center. The authors would like to thank the anonymous reviewers for
their helpful suggestions. Manuscript submitted 14 Dec. 2001. Manuscript
accepted 1 Feb. 2001. Final manuscript received 8 Feb. 2001.

rithms. With the algorithms presented in this letter, we hope to
enable more quantitative studies of oblivious routing algorithms
in the future.

II. PRELIMINARIES

A. Network model

The interconnection networks discussed in this letter have an
arbitrary topology and fixed length data units. These units are
referred to as packets, but any fixed size network unit, such as
flits or cells, is equivalent. In order to isolate the effects of rout-
ing on network throughput, an ideal flow-control technique is as-
sumed. Ideal flow-control ensures that the most heavily loaded
channels are 100% utilized. The throughput of the network with
ideal flow-control is an upper-bound on the throughput of any
actual network, and practical flow-control techniques can typi-
cally achieve 60-75% of this bound [8].

B. Definitions

• N - The number of nodes in the network.
• C - The set of all channels in the network.
• traffic matrix (Λ) - Any doubly-stochastic1 matrix where entry
λi,j represents the fraction of traffic traveling from source i to
destination j. An N × N doubly-stochastic matrix has row and
column sums of exactly one.
• permutation matrix (P) - A traffic matrix whose entries are
either 0 or 1.
• oblivious routing algorithm (π) - A routing algorithm that is
only a function of the source and destination nodes of a packet.
Oblivious routing algorithms can also be randomized ([9], pp.
121).
• channel load (γc(π,Λ)) - The expected number of packets
that cross channel c per cycle for the traffic matrix Λ and routing
function π.
• pair channel load (γc(π)i,j) - The expected number of pack-
ets that cross channel c per cycle when routing algorithm π sends
a packet from source i to destination j each cycle. If π is deter-
ministic, γc(π)i,j ∈ {0, 1}. Otherwise, when π is randomized,
the pair channel load is the probability that a packet uses channel
c during any particular cycle and 0 ≤ γc(π)i,j ≤ 1. 2

• maximum channel load (γc,max(π)) - The maximum load on
channel c over all traffic matrices.
• worst-case ideal throughput (Θ ideal,wc(π)) - The expected
amount of bandwidth available to a packet crossing the worst-

1Doubly-substochastic traffic matrices are not considered in this letter because
we are only concerned with worst-case traffic and any substochastic matrix can
be augmented with positive entries to create a stochastic matrix.

2It is assumed that the channel bandwidth equals the injection (ejection) band-
width at each node. In general, the pair channel load is between 0 and the ratio
of the injection (ejection) bandwidth to the channel bandwidth.

case channel:

Θideal,wc(π) = min
c∈C

[bc/γc,max(π)] .

To prevent the worst-case channel from saturating, the injection
bandwidth of each node sharing the channel is scaled so that the
average number of requests per cycle is equal to the channel’s
bandwidth bc.

III. FINDING THE WORST-CASE

Before determining the worst-case throughput of a network,
we describe how the throughput of a particular traffic pattern is
found. Suppose the channel capacities are infinite. Each node
sends one packet per cycle (a throughput of one) according to
the traffic pattern and the average load on all the channels is cal-
culated. However, each channel c can only sustain a throughput
of bc packets per cycle. If the requested load is greater than bc

the channel is saturated and actual throughput of the network
must be scaled back. For a given traffic pattern, the maximum
sustainable throughput is the smallest ratio of channel band-
width to channel load over all channels. If, for example, every
channel supported 1 packet per cycle, but the maximum channel
load was 3 packets per cycle, the network could only sustain a
throughput of 1/3. To ensure no channel is saturated, the net-
work must be operated at this throughput.

Since the network channels are not saturated, their linearity of
channel loading can be exploited. Linearity implies that the load
on a particular channel is simply the sum of the loads caused
by each source-destination pair. This fact can be used to con-
strain the search for worst-case patterns to permutation matrices.
Then, by representing all permutations as matchings within a
single bipartite graph and weighting the edges of the graph with
source-destination channel loads, a maximum-weight matching
yields the exact worst-case permutation for a particular chan-
nel and its corresponding load. Finally, the maximum-weight
matching is repeated over the set of all channels in the network
to find the worst-case ideal throughput.

A. Linearity of channel loading

The key to finding the worst-case of oblivious routing algo-
rithms is to take advantage of the algorithm’s linearity of chan-
nel loading. That is, as long as the channels of the network are
not saturated, the load on a particular channel c is the sum of all
the loads contributed by each source-destination pair in a traffic
pattern:

γc(π,Λ) =
i,j∑

λi,jγc(π)i,j .

An example of this property is shown in Figure 1.
Although the total load on each channel is determined by a

traffic matrix, the linearity property can be used to constrain the
search for worst-case traffic patterns to permutation matrices.

Theorem 1: For any oblivious routing algorithm, a permuta-
tion matrix can always realize the ideal worst-case throughput.

Proof: Assume that a traffic matrix Λ gives a throughput
lower than any permutation matrix. This implies Λ loads at least
one channel more heavily than any permutation. By the result

u
c

x v

yw

Fig. 1. An example of two independent contributions to channel c’s load. One
packet is being sent from node x to node y, crossing channel c. Another
packet is sent from node u to node v and also uses channel c. Both of these
routes contribute a load of one packet per cycle across channel c. Because
none of the channels in the network are saturated, the net load on channel c
is simply 2 packets per cycle.

of Birkhoff [10], any doubly-stochastic traffic matrix Λ can be
written as a weighted combination of permutation matrices:

Λ =
n∑

i=1

φiPi, s.t.
n∑

i=1

φi = 1.

Without loss of generality, for any channel c, a permutation P ∗

is found such that

P ∗ = argmax
P∈{P1,...,Pn}

γc(π, P).

Given an oblivious routing algorithm π, the corresponding total
load on c can be written using linearity:

γc(π,Λ) =
n∑

i=1

φiγc(π, Pi) ≤
n∑

i=1

φiγc(π, P ∗) = γc(π, P ∗).

P ∗ loads any channel at least as heavily as Λ, but this is a con-
tradiction. Therefore, a permutation matrix can always give the
ideal worst-case throughput. �

B. Bipartite graph representation

Using the linearity of oblivious routing functions, a bipartite
graph can be used to represent the load on a single channel due
to any particular permutation. For our graph, the first set of N
nodes are used to represent packet sources and the second set of
N nodes represent the packet destinations. Edges are added be-
tween every source and destination node for a total of N2 edges,
as shown in Figure 2. There is a one-to-one correspondence be-
tween permutation matrices and perfect matchings3 of this bi-
partite graph. Also, note that this graph’s structure is unrelated
to the topology of the underlying interconnection network.

The graph’s construction is finished by weighting each edge
from source node s to destination node d with the amount of load
contributed to a particular channel c when packets are routed
from s to d, which is γc(π)s,d (Figure 2). Using these weights,
the amount of load due to a specific permutation is just the sum
of the edge weights in its corresponding bipartite matching. This
sum is called the weight of that matching.

3A perfect matching is a subset of the graph edges such that each node is
incident with exactly one edge in the subset.

γc (π)0,0

γc (π)1,1

γc (π)N-1,N-1

γc (π)0,1γc (π)1,0

0

1

N-1

0

1

N-1

Source
Nodes

Destination
Nodes

P =

1
1

1

1

0

N-1

10 N-1

Fig. 2. Construction of the bipartite graph for finding channel load due to a par-
ticular permutation. A perfect matching (bold edges) and its corresponding
permutation P are also shown. The rows (columns) of P correspond to the
source (destination) nodes of the bipartite graph. As an example, the match-
ing’s edge from source node 0 to destination node 1 corresponds to the 1 in
entry (0, 1) of the permutation matrix.

The edge weights of the bipartite graph are calculated from
the routing algorithm using either an exhaustive or statistical ap-
proach. For each source-destination pair (s, d), the exhaustive
approach enumerates all paths from s to d generated by the rout-
ing algorithm and sums the probability of each of these paths
that includes the channel c to compute the edge weight γc(π)s,d.

For some routing algorithms, the number of paths generated
may be larger than polynomial. With such a large number
of paths, the edge weight can be accurately approximated by
choosing a random sample of the paths from s to d generated
by the routing algorithm and summing the contribution of the
paths that include c to compute the weight. The contribution in
this case is the probability of all of the paths represented by the
sample.

C. Maximum-weight matching

Given the bipartite construction from the previous section,
a maximum-weight matching of the graph is found. From the
correspondence between matchings and permutations, finding a
maximum-weight matching is equivalent to evaluating

γc,max(π) = max
P∈P

γc(π, P),

where P is the set of all permutation matrices. By repeating this
operation over all the channels, the ideal worst-case throughput
can be determined:

Θideal,wc(π) = min
c∈C

[bc/γc,max(π)]

An O(N3) maximum-weight matching algorithm exists [11],
and therefore, finding the worst-case channel load requires
O(|C|N3) time. For typical fixed-degree networks, such as
tori or meshes, |C| is proportional to N and the run time is
O(N4). The maximum value of |C| is N2, corresponding to
a fully-connected network, which bounds the time of the overall
algorithm to O(N5). If symmetries exist in the routing function
and topology, then it is only necessary to examine a subset of the
channels, as discussed in [12]. So, by exploiting the linearity of

s

d

j

i

Fig. 3. Example dimension-order (solid line) and ROMM routes (dashed lines)

oblivious routing algorithms, the problem of examining all N !
permutations has been reduced to a polynomial-time algorithm.

IV. EXPERIMENTS

As an illustration of the importance of finding exact worst-
case permutations, a comparison of two minimal, oblivious rout-
ing algorithms is presented for a 2-dimensional torus network
(k-ary 2-cube)4. The first algorithm is dimension-order rout-
ing (DOR). DOR deterministically routes a packet completely
in the first dimension before routing in the second. An example
dimension-order route from source s to destination d is shown
as a solid line in Figure 3.

The second algorithm is the two-phase variant of the ran-
domized algorithm (ROMM) described in [3]. ROMM routes
a packet from source to destination by uniformly choosing a
random intermediate node within the minimal quadrant. The
minimal quadrant is the set of nodes along any minimal length
path between the source and destination. The packet then uses
DOR, but with a randomized order of dimension traversal, from
the source to intermediate and repeats the same algorithm from
the intermediate to the destination. Two example ROMM routes,
which use intermediate nodes i and j respectively, are shown in
Figure 3 as dashed lines.

Compared to DOR, where all traffic between a source-
destination pair is concentrated along a single path, ROMM
more evenly distributes a source-destination pair’s traffic across
a larger number of channels. From this qualitative description of
the behavior of ROMM and based on the discussion presented
in [3], one might expect that ROMM would have better worst-
case performance than DOR.

To test this intuition, the performance of these two algorithms
was compared against uniform random traffic and two permu-
tations that are typically relied upon to demonstrate poor per-
formance [3][4]: bit-complement and transpose. The tornado
pattern was also considered, where each node sends packets
(k−1)/2 hops to the right in the lowest dimension (Figure 4). In
addition to these patterns, a trial of 104 random permutation ma-
trices was generated and the worst-case throughput for both al-
gorithms over the 104 permutations was determined. As shown
in Table I, ROMM generally performed as well as DOR on these
conventional metrics.

Next, the algorithm presented in Section III was used to deter-
mine the worst-case for both DOR and ROMM (Table I). Edge
weights were calculated using the exhaustive method described

4Only odd values of k are considered to simplify the explanation of the worst-
case, but even values of k follow the same trends

Fig. 4. Tornado traffic pattern for k = 5

TABLE I

IDEAL THROUGHPUT OF DOR AND ROMM OVER SEVERAL PATTERNS ON

AN 9-ARY 2-CUBE (FRACTION OF NETWORK CAPACITY)

Pattern DOR ROMM

Uniform 1 1
Bit-complement 0.556 0.362

Transpose 0.278 0.556
Tornado 0.278 0.278

Worst of 104 permutations 0.278 0.255
Worst-case 0.278 0.173

in Section III-B. All calculations were performed using integer
arithmetic, so no round-off error occurred and the worst-case
results are exact. The worst-case of DOR matched the result
of 0.278 of capacity found in the random permutations. How-
ever, ROMM’s exact worst-case of 0.173 was significantly less
— only 62.3% of DOR’s worst-case throughput.

The reason for ROMM’s lower worst-case throughput is illus-
trated by constructing an adversarial traffic pattern. In ROMM,
the tornado pattern in a single row gives the same loading as
DOR. However, because ROMM routes through the minimal
quadrant, and not just around the edges as DOR does, source-
destination pairs in other rows can add additional load to chan-
nels in the tornado row, reducing the throughput of ROMM be-
low that of DOR. An example of this is shown in Figure 5 and a
worst-case permutation for ROMM is shown in Figure 6.

A further comparison of the worst-cases of ROMM and DOR
on k-ary 2-cubes showed that as k increases beyond 9, DOR
approaches approximately 0.26 of capacity, while ROMM ap-
proaches 0.14 or about half that of DOR. So, although ROMM
might qualitatively seem to be a more “balanced” routing algo-
rithm, these experiments show that simple DOR has superior
worst-case performance on k-ary 2-cubes. This result was not
immediately obvious from applying standard traffic patterns or

Tornado

c

y

x

Fig. 5. Adversarial pattern for ROMM. Only the nodes in the middle row
(dashed box) run the tornado traffic pattern, which loads c the same amount
as in DOR’s worst-case. However, because ROMM routes through the min-
imal quadrant, additional load can be placed on c by sending traffic from
nodes outside the middle row. For example, the minimal quadrant of nodes
x and y contains c, so sending traffic from x to y increases c’s load beyond
that of DOR.




(4, 0) (4, 6) (4, 7) (4, 8) (8, 8) (6, 7) (4, 1) (4, 2) (4, 3)

(0, 0) (6, 0) (6, 6) (7, 1) (6, 5) (8, 2) (1, 5) (0, 4) (5, 4)

(6, 8) (7, 0) (5, 6) (8, 1) (5, 5) (0, 3) (5, 3) (1, 4) (6, 4)

(5, 8) (8, 0) (0, 6) (0, 2) (5, 2) (4, 5) (6, 3) (2, 4) (7, 4)

(7, 8) (0, 1) (5, 1) (8, 5) (6, 2) (3, 5) (7, 3) (3, 4) (8, 4)

(5, 0) (7, 6) (6, 1) (7, 5) (7, 2) (2, 5) (8, 3) (4, 4) (0, 5)

(1, 0) (1, 6) (1, 7) (1, 8) (0, 8) (5, 7) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 6) (2, 7) (2, 8) (8, 7) (0, 7) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 6) (3, 7) (3, 8) (7, 7) (8, 6) (3, 1) (3, 2) (3, 3)




Fig. 6. Worst-case permutation for ROMM on a 9-ary 2-cube. Entry (i, j) of
the matrix denotes the destination node of the source on row i column j.

searching a large set of random permutations, showing the prac-
tical benefit of the maximum-weight matching approach.

V. CONCLUSIONS

In this letter, we presented an algorithm that can find the
worst-case throughput of most oblivious routing algorithms in
polynomial time, which makes worst-case analysis tractable.
Additionally, a comparison of two minimal routing algorithms
illustrated that intuition, difficult traffic patterns, and random
sampling of permutations do not necessarily provide an accu-
rate view of the worst-case performance of a particular routing
algorithm. These traditional approaches poorly characterized
the worst case of the ROMM algorithm [3], overestimating the
throughput by approximately 47%.

We hope the techniques presented in this letter will be a useful
tool in the design and quantitative comparison of routing algo-
rithms. Moreover, using the bipartite graph construction to an-
alyze oblivious routing algorithms may prove to be a powerful
technique for finding optimal worst-case routing algorithms.

REFERENCES

[1] W. J. Dally, P. P. Carvey, and L. R. Dennison, “The Avici terabit
switch/router,” in Conference Record of Hot Interconnects 6, August 1998,
pp. 41–50.

[2] InfiniBand Trade Association, “InfiniBand architecture specification,”
http://www.infinibandta.org.

[3] T. Nesson and S. L. Johnsson, “ROMM routing on mesh and torus net-
works,” in Proc. 7th Annual ACM Symposium on Parallel Algorithms and
Architectures, 1995, pp. 275–287.

[4] K. Bolding, M. Fulgham, and L. Snyder, “The case for chaotic adaptive
routing,” IEEE Trans. on Computers, vol. 46, no. 12, pp. 1281–1292,
December 1997.

[5] A. Borodin and J. Hopcroft, “Routing, merging, and sorting on parallel
models of computation,” Journal of Computer and System Sciences, vol.
30, pp. 130–145, 1985.

[6] C. Kaklamanis, D. Krizanc, and A. Tsantilas, “Tight bounds for oblivi-
ous routing in the hypercube,” in Proc. 2nd Annual ACM Symposium on
Parallel Algorithms and Architectures, 1990, pp. 31–36.

[7] F. T. Leighton, B. M. Maggs, A. Ranade, and S. B. Rao, “Randomized
routing and sorting on fixed connection networks,” Journal of Algorithms,
vol. 17, no. 1, pp. 157–205, July 1994.

[8] L. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in Proc. of the 7th Int. Symposium on High-
Performance Computer Architecture, January 2001, pp. 255–266.

[9] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: an engi-
neering approach, IEEE Computer Society Press, 1997.

[10] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac.
Tucumán Rev. Ser. A, vol. 5, pp. 147–151, 1946.

[11] H. Kuhn, “The Hungarian method for the assignment problem,” Naval
Res. Logist. Q., vol. 2, pp. 83–97, 1955.

[12] B. Towles, “Finding worst-case permutations for oblivious routing algo-
rithms,” CVA Technical Report 121, Stanford University, December 2001.

