
Stanford University Concurrent VLSI Architecture Memo 121

Stanford University
Computer Systems Laboratory

Finding Worst-case Permutations for
Oblivious Routing Algorithms

Brian Towles

Abstract

We present an algorithm to find a worst-case traffic pattern for any oblivious routing algorithm on an arbitrary
interconnection network topology. The linearity of channel loading offered by oblivious routing algorithms enables
the problem to be mapped to a bipartite maximum-weight matching, which can be solved in polynomial time. Find-
ing exact worst-case performance was previously intractable, and we demonstrate an example case where traditional
characterization techniques overestimate the throughput of a particular routing algorithm by 47%.

Keywords: oblivious routing, worst-case traffic, maximum-weight matching

∗B. Towles is with the Computer Systems Laboratory in the Department of Electrical Engineering, Stanford University. This work has been
supported by an NSF Graduate Fellowship with supplement from Stanford University and under the MARCO Interconnect Focus Research Center.
E-mail: btowles@cva.stanford.edu. A brief version of this report has been submitted to Computer Architecture Letters for review.

1 Introduction

As interconnection networks are applied to throughput-sensitive applications, such as packet routing [1] and I/O inter-
connect [2], the worst-case behavior of a routing function becomes an important design consideration. Specifically in
the packet router application, little can be said about the incoming traffic patterns, and there is no path for backpressure
to slow the flow of incoming packets. Therefore, the guaranteed throughput of the router is bounded by the worst-case
throughput over all traffic patterns. Obviously, a system designer would like to be able to characterize this worst-case
situation.

This report presents an efficient technique for finding an exact worst-case pattern for any oblivious routing function
on an arbitrary network topology (Section 3). By exploiting the linearity of oblivious routing functions, finding the
worst-case traffic pattern can be cast as the maximum-weight matching of a bipartite graph. This graph problem can
be solved in polynomial time, quickly yielding exact worst-case results. The solutions are then used to determine the
worst-case throughput of a particular system.

This approach can offer a significant improvement in accuracy over existing techniques. Previous studies of rout-
ing algorithms generally chose “bad” traffic patterns that the authors felt represented worst-case or near worst-case
behavior [3][4]. However, for the example presented in Section 5, the traditional techniques overestimate the worst-
case throughput of the ROMM routing algorithm [3] by approximately 47%. Worst-case characterization has also been
approached from a theoretical perspective [5][6][7], and while providing strong results, these analyses do not provide
exact throughput values for specific topologies and routing algorithms. With the algorithms presented in this report,
we hope to enable more quantitative studies of oblivious routing algorithms in the future.

2

2 Preliminaries

2.1 Network model

The interconnection networks discussed in this report have an arbitrary topology and fixed length data units. We
refer to these units as packets, but any fixed size network unit, such as flits or cells, is equivalent. In order to isolate
the effects of routing on network throughput, an ideal flow-control technique is assumed. Ideal flow-control ensures
that the most heavily loaded channels are 100% utilized. The throughput of the network with ideal flow-control is
an upper-bound on the throughput of any actual network, and practical flow-control techniques can typically achieve
60-75% of this bound [8].

2.2 Definitions

Topology:

• N - The number of nodes in the network.

• C - The set of all channels in the network.

• isomorphic graphs - Two graphs G and H are isomorphic if there exists a labeling function such that a relabeling
of the nodes of G yields a graph identical to H .

• automorphism - Any isomorphic labeling of a graph onto itself.

• edge-symmetric graph - A graph G is edge-symmetric if for every pair of edges u and v, there exists an auto-
morhpism on G that maps u to v.

Network traffic:

• traffic matrix (Λ) - Any doubly-stochastic1 matrix where entry λi,j represents the fraction of traffic traveling
from source i to destination j. An N × N doubly-stochastic matrix has row and column sums of one:

N∑
i=1

λi,k =
N∑

j=1

λk,j = 1, ∀k ∈ {1, . . . , N}

• permutation traffic (P) - A traffic matrix where the entries are either 0 or 1.

Routing functions:

• oblivious routing algorithm (π) - A routing algorithm that is only a function of the source and destination node
of a packet. Oblivious routing algorithms can also be randomized, where a particular route is randomly chosen
from a set of possible routes ([9], pp. 121).

Channel loading and throughput:

• channel load (γc(π, Λ)) - The expected number of packets that cross channel c per cycle for the traffic matrix Λ.

• pair channel load (γc(π)i,j) - The expected number of packets that cross channel c per cycle when routing
algorithm π sends a packet from source i to destination j each cycle. If π is deterministic, γc(π)i,j ∈ {0, 1}.
Otherwise, when π is randomized, the pair channel load is the probability that a packet uses channel c during
any particular cycle and 0 ≤ γc(π)i,j ≤ 1. 2

• maximum channel load (γc,max(π)) - The maximum load on channel c over all traffic matrices.

1We do not consider doubly-substochastic traffic matrices in this report because we are only concerned with worst-case traffic and any sub-
stochastic matrix can be augmented with positive entries to create a stochastic matrix.

2It is assumed that the channel bandwidth equals the injection (ejection) bandwidth at each node. In general, the pair channel load is between 0
and the ratio of the injection (ejection) bandwidth to the channel bandwidth.

3

• worst-case channel load (γwc(π)) - The worst-case load on any channel over all traffic matrices:

γwc(π) = max
c∈C

γc,max(π).

• worst-case ideal throughput (Θ ideal,wc(π)) - The expected amount of bandwidth available to a packet crossing
the worst-case channel:

Θideal,wc(π) = b/γwc(π).

Since γwc(π) packets are expected on the channel per cycle, the bandwidth of the channel b must be divided
between them.

4

y

x v

u
c

w

Figure 1: Two independent contributions to channel c’s load

3 Finding the worst-case

Creating worst-case traffic patterns for oblivious routing algorithms is simplified by their linearity of channel loading.
Linearity implies that the load on a particular channel is simply the sum of the loads caused by each source-destination
pair. This fact can be used to constrain the search for worst-case patterns to permutation traffic. Then, by representing
permutations with a bipartite graph and weighting the edges of the graph with source-destination channel loads, a
maximum weight matching algorithm yields the exact worst-case permutation for a particular channel and its corre-
sponding load in polynomial time. Finally, the maximum-weight matching is repeated over the set of all channels in
the network to find the worst-case channel load and thus the worst-case ideal throughput.

3.1 Linearity of channel loading

The key to finding the worst-case of oblivious routing algorithms is to take advantage of their linearity of channel
loading. That is, the load on a particular channel c is the sum of all the loads contributed by each source-destination
pair in a traffic pattern:

γc(π,Λ) =
i,j∑

λi,jγc(π)i,j .

An example of this property is shown in Figure 1 for an oblivious routing function π. One packet is being sent from
node x to node y, crossing channel c. Another packet is sent from node u to v and also uses channel c. Both of these
routes contribute a load of one packet per cycle across channel c or γc(π)x,y = γc(π)u,v = 1. Now consider a traffic
matrix where λx,y = λu,v = 1. Then, for this example, the net load on channel c is λx,yγc(π)x,y + λu,vγc(π)u,v = 2
packets per cycle.

Although the total load on each channel is determined by a traffic matrix, the linearity property can be used to
constrain the search for worst-case traffic patterns to permutation traffic only.

Theorem 1 For any oblivious routing algorithm, a permutation matrix can always realize the ideal worst-case through-
put.

Proof Assume that the traffic matrix Λ gives a throughput lower than any permutation traffic pattern. By the result
of Birkhoff [10], any doubly-stochastic traffic matrix Λ can be written as a weighted combination of permutation
matrices:

Λ =
n∑

i=1

φiPi, Pi ∈ P.

5

γc (π)0,0

γ
c
(π)

1,1

γc (π)N-1,N-1

γ
c
(π)

0,1
γ

c
(π)

1,0

0

1

N-1

0

1

N-1

Source
Nodes

Destination
Nodes

Figure 2: Construction of the bipartite graph

Given an oblivious routing algorithm π, the corresponding total channel load can be written using the independence
property:

γc(π,Λ) =
n∑

i=1

φiγc(π, Pi).

Considering the most heavily loaded channel c∗ find the permutation P ∗ such that

P ∗ = argmax
P∈{P1,...,Pn}

γc∗(π, P).

Then γc∗(π, P ∗) ≥ γc∗(π, Pi) for i = 1, . . . , n and substituting P ∗ as the traffic pattern gives a throughput less
than or equal to Λ. This is a contradiction, and therefore a permutation matrix can always give the ideal worst-case
throughput.

Using this result, the worst-case channel load for a routing function π is

γwc(π) = max
c∈C

[
max
P∈P

γc(π, P)
]

where P is the set of all permutation matrices.

3.2 Bipartite graph representation

Using the linearity of oblivious routing functions, a bipartite graph can be used to represent the load on a single
channel due to any particular permutation. For our graph, the first set of N nodes are used to represent packet
sources and the second set of N nodes represent the packet destinations. Edges are added between every source
and destination node for a total of N2 edges, as shown in Figure 2. The edge labels shown in the figure are explained
in the following paragraphs. Also, note that this graph’s structure is unrelated to the topology of the underlying
interconnection network.

The bipartite graph gives a simple connection between permutation traffic patterns and a matching of the graph. A
matching is a subset of the graph edges such that no node has more than one of its edges in the matching. In our original
example, a packet is routed from node x to node y. This can be represented by adding the edge from source node x to
destination node y to a matching (Figure 3). We can continue by adding the edge from node u to node v. However,
the constraints of the matching do not allow an additional edge from node x to w, for example, and these are the

6

Source
Nodes

u

y

x

w

v

u
y
x

w
v

uyx wv

1
1

1
1

1

P =

Destination
Nodes

u

y

x

w

v

Figure 3: Example of a perfect matching in a bipartite graph and the corresponding permutation traffic pattern

exact constraints of the permutation — no node can be used as a source for more than one destination. This matching
is illustrated in Figure 3, along with additional edges, shown in gray, which make the matching perfect. A perfect
matching contains exactly one edge associated with every node in the graph and there is a one-to-one correspondence
between permutation traffic patterns and perfect matchings (Figure 3).

We finish the graph’s construction by weighting each edge from s to d with the amount of load contributed to a
particular channel c when packets are routed from s to d, which is γc(π)s,d (Figure 2). Using these weights, the amount
of load due to a specific permutation is just the sum of the edge weights in its corresponding bipartite matching. In
the example, the edge from node x to y and the edge from u to v are labeled with one. When both are included in a
matching they contribute a total load of two packets per cycle — the sum of their edge weights. The sum of the edge
weights of any matching is called the weight of that matching.

The edge weights of the bipartite graph are calculated from the routing algorithm using either an exhaustive or
statistical approach. For each source destination pair (s, d), the exhaustive approach enumerates all paths from s to
d generated by the routing algorithm and sums the probability of each of these paths that includes the channel c to
compute the edge weight γc(π)s,d.

For some routing algorithms, the number of paths generated may be larger than polynomial. With such a large
number of paths the edge weight can be accurately approximated by choosing a random sample of the paths generated
by the routing algorithm from s to d and summing the contribution of the paths that include a particular channel to
compute its edge weight. The contribution in this case is the probability of all of the paths represented by the sample.

3.3 Maximum-weight matching

Given the bipartite construction from the previous section, a maximum-weight matching of the graph is found. From the
correspondence between matchings and permutations, finding a maximum-weight matching is equivalent to evaluating

γc,max(π) = max
P∈P

γc(π, P).

By repeating this operation over all the channels, the worst-case channel loading can be determined:

γwc(π) = max
c∈C

γc,max(π).

An O(N3) maximum-weight matching algorithm exists [11], and therefore, finding the worst-case channel load re-
quires O(|C|N3) time. For typical fixed-degree networks, such as tori or meshes, |C| is proportional to N and the
run time is O(N4). The maximum value of |C| is N2, corresponding to a fully-connected network, which bounds the
time of the overall algorithm to O(N5). So, by exploiting the linearity of oblivious routing algorithms, the problem of
examining all N ! permutations has been reduced to a polynomial-time algorithm.

7

2,2

3,12,11,10,1

0,2 1,2 3,2

1,00,0 3,02,0

f(x,y) = (2-x,y-1)

g(x,y) = (x-3,y-1)

Figure 4: Example of automorphisms mapping channels to the representative set

4 Algorithm Optimizations

4.1 Symmetry

In Section 3, no assumptions were made about the underlying topology of the interconnection network. However, by
exploiting the symmetry of a network, the number of channels examined to find the worst case can be greatly reduced.
In fact, for a completely edge-symmetric topology and edge-symmetric routing algorithm, only a single channel needs
to be considered.

To take advantage of symmetry, a set of focus channels F is formed so that for every channel c in the intercon-
nection network, there exists an automorphism g that maps c into c′ such that c′ ∈ F . The automorphism must also
maintain symmetry in the routing algorithm, so that γc(π)i,j = γc′(π)g(i),g(j) for every source-destination pair (i, j).

For example, consider the 4,3-ary 2-cube shown in Figure 4, which is partially symmetric. The channel from node
(0, 0) to (1, 0) and the channel from (0, 0) to (0, 1) form a focus set, assuming these channels also preserve symmetry
in the routing algorithm. The figure also shows two automorphisms, f and g, that map particular channels to the focus
set.

Now, instead of considering all of the channels for the worst-case load, only the channels in F are considered.

Theorem 2 Given a topology, oblivious routing algorithm π, and their focus channel set F , at least one element of F
can be loaded as heavily as any other channel in the network for a given traffic pattern.

Proof Assume there is an channel c that is not in the focus set with a load greater than any element of the focus set.
Let the permutation that realizes this load on c be P . By the definition of the focus set, there exists an automorhpism
g that maps c to an element f ∈ F . The labeling function is then used to map every every pair of the permutation P
into a new permutation P ′ which contains pairs (g(i), g(j)) over all pairs (i, j) in P . However, since g also preserves
channel loading, the permutation P ′ gives the same load on f as P gave on c, which is a contradiction. Therefore, no
channel can be loaded more heavily than the channels in the focus set.

Using this result, the worst-case channel loading w can be expressed as

γwc(π) = max
f∈F

[
max
P∈P

γf (π, P)
]
.

This implies |F | maximum-weight matchings are required to find the ideal worst-case throughput. Many common
topologies, most notably the torus, are edge-symmetric. Completely edge-symmetric oblivous routing algorithms are
less common, but routing algorithms can often be represented with a small focus set. For example, only two focus

8

2,2

3,12,11,10,1

0,2 1,2 3,2

1,00,0 3,02,0

vector = (1,1)

vector = (1,1)

Figure 5: Example of relative routing

channels are needed to find the worst-case for dimension-order routing on the torus, which reduces the run time to
O(N3).

4.2 Relative routing

For a designer to use maximum-weight matchings to determine the worst-case permutation the edge weights γc(π)i,j

must be determined. For a general routing algorithm π, each source-destination pair must be considered to deter-
mine its contribution to the load on the focus channel(s). In an implementation, determining the edge weights often
dominates the overall run-time for practical size networks.

However, if the topology is edge-symmetric, it is common for an oblivious routing algorithm to be relative or
position-indepedent. That is, the input to the routing algorithm can be a “vector” that points from the source to
destination. Then the paths a packet takes from the source to destination only depend on their relative placement in
the network. For example, dimension-order routing in a torus is a relative routing algorithm. As shown in Figure 5,
a route from (0, 0) to (1, 1) follows the same relative path as a route from (2, 1) to (3, 2). So, the dimension order
routing algorithm only needs the vector (1, 1) to determine the paths in this example.

A relative routing algorithm can be exploited to decrease the number of source-destination pairs considered to find
all the required edge weights. If π is a relative routing algorithm, for a given source-destination pair (i, j) and a focus
link from node u to node v,

γ(u,v)(π)i,j = γ(u+k,v+k)(π)i+k,j+k,

where k ∈ {0, . . . , N − 1}. This relationship becomes useful in a practical situation when the designer does not
have an explicit formula for γc(π). In this case, finding the load on all channels in the network due to a particular
source-destination pair does require an increase in storage proportional to the number of channels, but little additional
work since complete paths for the routing algorithms are already being evaluated. So, by using the fact that the
routing algorithm is relative, a single source-destination pair (i, j)’s loading of all channels can be used to determine
N loadings of a focus channel for the source-destination pairs (i+ k, j + k), where k ∈ {0, . . . , N − 1}. This reduces
the total number of pairs considered to N compared to N2 for a non-relative routing algorithm.

9

s

d

j

i

Figure 6: Example dimension-order (solid line) and ROMM routes (dashed lines)

Figure 7: Tornado traffic pattern for k = 5

5 Experiments

As an illustration of the importance of finding exact worst-case permutations, a comparison of two minimal, oblivious
routing algorithms is presented for a 2-dimensional torus network (k-ary 2-cube)3. The first algorithm is dimension-
order routing (DOR). DOR deterministically routes a packet completely in the first dimension before routing in the
second. An example dimension-order route from source s to destination d is shown as a solid line in Figure 6.

The second algorithm is the two-phase variant of the randomized algorithm (ROMM) described in [3]. ROMM
routes a packet from source to destination by uniformly choosing a random intermediate node within the minimal
quadrant. The minimal quadrant is the set of nodes along any minimal length path between the source and destination.
The packet then uses DOR, but with a randomized order of dimension traversal, from the source to intermediate
and repeats the same algorithm from the intermediate to the destination. Two example ROMM routes, which use
intermediate nodes i and j respectively, are shown in Figure 6 as dashed lines.

Compared to DOR, where all traffic between a source-destination pair is concentrated along a single path, ROMM
more evenly distributes a source-destination’s traffic across a larger number of channels. From this qualitative descrip-
tion of the behavior of ROMM and based on the discussion presented in [3], one might expect that ROMM would have
better worst-case performance than DOR.

To test this intuition, the performance of these two algorithms was compared against uniform random traffic and
two permutations that are typically relied upon to demonstrate poor performance [3][4]: bit-complement and transpose.
The tornado pattern was also considered, where each node sends packets (k − 1)/2 hops to the right in the lowest
dimension (Figure 7). In addition to these patterns, a trial of 104 random permutation traffic patterns was generated
and the worst-case throughput for both algorithms over the 104 permutations was determined. As shown in Table 1,
ROMM generally performed as well as DOR on these conventional metrics.

Next, the algorithm presented in Section 3 was used to determine the worst-case for both DOR and ROMM
(Table 1). Edge weights were calculated using the exhaustive method described in Section 3.2. All calculations were
performed using integer arithmetic, so no round-off error occurred and the worst-case results are exact. The worst-
case of DOR matched the result of 0.278 of capacity found in the random permutations. However, ROMM’s exact
worst-case of 0.173 was significantly less - only 62.3% of DOR’s worst-case throughput.

In ROMM, the tornado pattern in a single row gives the same loading as DOR. However, because ROMM routes
through the minimal quadrant, and not just around the edges as DOR does, source-destination pairs in other rows
can add additional load to channels in the tornado row, reducing the throughput of ROMM below that of DOR. An

3Only odd values of k are considered to simplify the explanation of the worst-case, but even values of k follow the same trends

10

Table 1: Ideal throughput of DOR and ROMM over several patterns on an 9-ary 2-cube (fraction of network capacity)

Pattern DOR ROMM

Uniform 1 1
Bit-complement 0.556 0.362

Transpose 0.278 0.556
Tornado 0.278 0.278

Worst of 104 permutations 0.278 0.255
Worst-case 0.278 0.173

Tornado

c

y

x

Figure 8: Adversarial pattern for ROMM

example of this is shown in Figure 8, where tornado traffic is set up for the nodes in one row. This loads channel c to
the worst-case of DOR. The remaining rows do not participate in the tornado pattern, but are set up to send additional
traffic across channel c. For example, the minimal quadrant between nodes x and y overlaps c (an example path is
shown in bold). So, sending packets from x to y increases the load on c beyond the simple tornado case. The complete
permutation found by the algorithm is shown in Figure 9.

A further comparison of the worst-cases of ROMM and DOR on k-ary 2-cubes showed that as k increases, DOR
approaches approximately 0.26 of capacity, while ROMM approaches 0.14 or about half that of DOR. So, although
ROMM might qualitatively seem to be a more “balanced” routing algorithm, these experiments show that simple
DOR has superior worst-case performance on k-ary 2-cubes. This result was not immediately obvious from applying
standard “difficult” traffic patterns or searching a large set of random permutations, showing the practical benefit of
the maximum-weight matching approach.




(4, 0) (4, 6) (4, 7) (4, 8) (8, 8) (6, 7) (4, 1) (4, 2) (4, 3)

(0, 0) (6, 0) (6, 6) (7, 1) (6, 5) (8, 2) (1, 5) (0, 4) (5, 4)

(6, 8) (7, 0) (5, 6) (8, 1) (5, 5) (0, 3) (5, 3) (1, 4) (6, 4)

(5, 8) (8, 0) (0, 6) (0, 2) (5, 2) (4, 5) (6, 3) (2, 4) (7, 4)

(7, 8) (0, 1) (5, 1) (8, 5) (6, 2) (3, 5) (7, 3) (3, 4) (8, 4)

(5, 0) (7, 6) (6, 1) (7, 5) (7, 2) (2, 5) (8, 3) (4, 4) (0, 5)

(1, 0) (1, 6) (1, 7) (1, 8) (0, 8) (5, 7) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 6) (2, 7) (2, 8) (8, 7) (0, 7) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 6) (3, 7) (3, 8) (7, 7) (8, 6) (3, 1) (3, 2) (3, 3)




Figure 9: Worst-case permutation for ROMM on a 9-ary 2-cube. Entry (i, j) of the matrix denotes the destination
node of the source on row i column j.

11

6 Conclusions

In this report, we presented an algorithm that can find the worst-case throughput of oblivious routing algorithms in
O(|C|N3) time (bounded by O(N5)), which makes worst-case analysis tractable. Additionally, a comparison of two
minimal routing algorithms illustrated that intuition, difficult traffic patterns, and random sampling of permutations
do not necessarily provide an accurate view of the worst-case performance of a particular routing algorithm. These
traditional approaches poorly characterized the worst case of the ROMM algorithm [3], overestimating the throughput
by approximately 47%.

We hope the techniques presented in this report will be a useful tool in the design and quantitative comparison
of routing algorithms. Moreover, using the bipartite graph construction to analyze oblivious routing algorithms may
prove to be a powerful technique for finding optimal worst-case routing algorithms.

12

References

[1] W. J. Dally, P. P. Carvey, and L. R. Dennison, “The Avici terabit switch/router,” in Conference Record of Hot
Interconnects 6, August 1998, pp. 41–50.

[2] InfiniBand Trade Association, “InfiniBand architecture specification,” http://www.infinibandta.org.

[3] T. Nesson and S. L. Johnsson, “ROMM routing on mesh and torus networks,” in Proc. 7th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1995, pp. 275–287.

[4] K. Bolding, M. Fulgham, and L. Snyder, “The case for chaotic adaptive routing,” IEEE Trans. on Computers,
vol. 46, no. 12, pp. 1281–1292, December 1997.

[5] A. Borodin and J. Hopcroft, “Routing, merging, and sorting on parallel models of computation,” Journal of
Computer and System Sciences, vol. 30, pp. 130–145, 1985.

[6] C. Kaklamanis, D. Krizanc, and A. Tsantilas, “Tight bounds for oblivious routing in the hypercube,” in Proc.
2nd Annual ACM Symposium on Parallel Algorithms and Architectures, 1990, pp. 31–36.

[7] F. T. Leighton, B. M. Maggs, A. Ranade, and S. B. Rao, “Randomized routing and sorting on fixed connection
networks,” Journal of Algorithms, vol. 17, no. 1, pp. 157–205, July 1994.

[8] L. Peh and W. J. Dally, “A delay model and speculative architecture for pipelined routers,” in Proc. of the 7th
Int. Symposium on High-Performance Computer Architecture, January 2001, pp. 255–266.

[9] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: an engineering approach, IEEE Computer
Society Press, 1997.

[10] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucumán Rev. Ser. A, vol. 5, pp. 147–151,
1946.

[11] H. Kuhn, “The Hungarian method for the assignment problem,” Naval Res. Logist. Q., vol. 2, pp. 83–97, 1955.

13

