
Route Packets, Not Wires: On-Chip Interconnection Networks

William J. Dally and Brian Towles
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

{billd,btowles}@cva.stanford.edu

Abstract
Using on-chip interconnection networks in place of ad-hoc glo-

bal wiring structures the top level wires on a chip and facilitates
modular design. With this approach, system modules (processors,
memories, peripherals, etc...) communicate by sending packets to
one another over the network. The structured network wiring
gives well-controlled electrical parameters that eliminate timing
iterations and enable the use of high-performance circuits to
reduce latency and increase bandwidth. The area overhead
required to implement an on-chip network is modest, we estimate
6.6%. This paper introduces the concept of on-chip networks,
sketches a simple network, and discusses some challenges in the
architecture and design of these networks.

1 Introduction
We propose replacing design-specific global on-chip wiring

with a general-purpose on-chip interconnection network. As
shown in Figure 1, a chip employing an on-chip network is com-
posed of a number of network clients: processors, DSPs, memo-
ries, peripheral controllers, gateways to networks on other chips,
and custom logic. Instead of connecting these top-level modules
by routing dedicated wires, they are connected to a network that
routes packets between them. Each client is placed in a rectangu-
lar tile on the chip and communicates with all other clients, not just
its neighbors, via the network. The network logic occupies a small
amount of area (we estimate 6.6%) in each tile and makes use of a
portion of the upper two wiring layers.

Using a network to replace global wiring has advantages of
structure, performance, and modularity. The on-chip network
structures the global wires so that their electrical properties are
optimized and well controlled. These controlled electrical parame-
ters, in particular low and predictable cross-talk, enable the use of
aggressive signaling circuits that can reduce power dissipation by
a factor of ten and increase propagation velocity by three times [3].
Sharing the wiring resources between many communication flows
makes more efficient use of the wires: when one client is idle,
other clients continue to make use of the network resources.

An on-chip interconnection network facilitates modularity by
defining a standard interface in much the same manner as a back-
plane bus. For the past three decades systems have been con-

structed by plugging modules into standard backplane buses such
as VME or PCI. The definition of a standard interface facilitates
reusability and interoperability of the modules. Also, standard
interfaces allow shared interconnect to be highly optimized since
its development cost can be amortized across many systems.

Of course, these modularity advantages are also realized by on-
chip buses [1][5][8], a degenerate form of a network. Networks
are generally preferable to such buses because they have higher
bandwidth and support multiple concurrent communications.
Some of our motivation for intra-chip networks stems from the
use of inter-chip networks to provide general system-level inter-
connect [7].

The remainder of this paper describes our initial thoughts on the
design of on-chip interconnection networks. To provide a base-
line, we start in Section 2 by sketching the design of a simple on-
chip network. Section 3 revisits the design choices made in this
simple network and discusses the challenges and open research
issues in the design of such networks. Section 4 discusses the
advantages and disadvantages of on-chip networks.

2 Example on-chip interconnection network
To give a flavor for on-chip interconnection networks this sec-

tion sketches the design of a simple network. Consider a 12mm x
12mm chip in 0.1µm CMOS technology with an 0.5µm minimum
wire pitch. As shown in Figure 1, we divide this chip into 16 3mm
x 3mm tiles. A system is composed by placing client logic (e.g.,
processors, DSPs, peripheral controllers, memory subsystems,
etc.) into the tiles. The client logic blocks communicate with one
another only over the network. There are no top-level connections
other than the network wires.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

Figure 1 Partitioning the die into module tiles and network logic

00 01 02 03

33

23

13

30 31 32

20 21 22

10 11 12

3mm

12mm

Tile
Network

logic

The network logic occupies a small amount of area between the
tiles and consumes a portion of the top two metal layers for net-
work interconnect. This baseline network uses a 2-dimensional
folded torus topology with the nodes 0-3 in each row cyclically
connected in the order 0,2,3,1. I/O pads may connect directly to
adjacent tiles or may be addressed as special clients of the net-
work.

2.1 The network presents a simple reliable data-
gram interface to each tile

Each tile interfaces with the network over an input port that is
used to insert packets into the network and an output port over

which the network delivers packets to the tile1. The input port
consists of a 256-bit data field and a control field with the follow-
ing subfields:

• Type(2 bits): encodes whether the flit (flow control digit) on
the data port is the start of a new packet (head), the continua-
tion of a packet (body), the end of a packet (tail), or an idle
cycle (idle). Note that a flit may be both a head and a tail. A
multi-flit packet is inserted by inserting a head flit, zero or
more body flits, and a tail flit.

• Size(4 bits): logarithmically encodes the size of the data in
the data field from 0 (1 bit) to 8 (256 bits). When a short data
field is sent the size field prevents the unused bits from dissi-
pating power.

• Virtual Channel (8 bits): bit mask that specifies which of
eight virtual channels this packet may be routed on. The vir-
tual channel mask identifies a class of service. Packets from
different classes may be in progress simultaneously. Thus,
the injection of a long, low priority packet may be interrupted
to inject a short, high-priority packet and then resumed.

• Route(16 bits): A source route that specifies two bits for each
hop (left, right, straight, or extract). The destination of the
route may be one of the sixteen tiles or special network clients
including I/O pads and internal network registers. This field
is only used on a head flit and can be used to carry data on
non-head flits.

• Ready(8 bits): a signal from the network back to the client
indicating that the network is ready to accept the next flit on
each virtual channel.

The output port consists of a 256-bit data field and a control
field consisting of type, size, virtual channel, and ready signals
with meanings identical to those on the input port. On the output
port the ready signal is from the client to the network.

In addition to this simple port interface, the network also pre-
sents a number of registers that can be used to reserve resources for
particular virtual channels. For example, one use of these registers
is to provide time-slot reservations for certain classes of traffic,
such as data streams and logical wires. This pre-scheduling is
required to provide guaranteed, predictable performance for
latency-critical or jitter-critical applications. The details of these
registers are beyond the scope of this paper.

2.2 Higher level protocols can be layered on top of
the simple interface.

This port interface presents a simple, low-level reliable data-
gram service to the network clients. Logic local to the network cli-
ents can layer higher level services on top of this interface. For
example, this local logic could present a memory read/write ser-
vice, a flow-controlled data stream, or a logical wire to the client.
Local logic can also provide a translation from a destination node
to a route.

As an example of layering, we will examine how a logical wire
is layered on top of the interface described above. Suppose tilei
has a bundle ofN=8 wires that should be logically connected to tile
j. The local logic monitors these wires for changes in their state.
Whenever the state changes, the logic arbitrates for access to the
network input port, possibly interrupting a lower priority packet
injection, and injects a single flit packet with data size 16, an
appropriate virtual channel mask, and destination of tilej. Eight of
the 16 data bits hold the state of the lines while the remaining data
bits identify this flit as a containing logical wires. Upon arrival at
tile j, the flit is decoded and the output of the logical wires are
updated with the new state. As discussed below, the latency of
transporting the state of wires in this manner can be made compet-
itive with dedicated wires. We expect the logic to implement many
higher-level services on top of the simple network will be made
readily available so it won’t have to be independently redesigned
with each module.

2.3 Router architecture
The router needed at each tile consists of five input controllers

(one for each direction and one for input from the tile) and five
output controllers. The router for each tile is distributed across the
four edges of a tile with the input and output controller for a given
direction (e.g., west) located on that edge of the tile. Figure 2
shows the west input controller and its connection to four output
controllers (one for each of the other directions and one for the
tile). By convention, the tile input and output controllers are
located on the west edge of the tile. Controllers handling traffic in
opposite directions have their MSBs at opposite ends to keep all
wires that turn a corner approximately the same length, 3mm.

1. Input and output here refer to packets going in and
out of the network, not the tile.

Figure 2 West input connections to output controllers

South
Output

West
Input

East
Output

North
Output

Tile
Output

Tile Logic &
Local Wiring

MSB MSB

MSB

MSB

The simple network employs virtual-channel flow control
[2][6]. Details of an input controller and output controller are
shown in Figure 3. Each input controller has an input buffer and
input state logic for each virtual channel. When a head flit arrives
at each tile, the input controller strips the next entry off the route
field and uses these two bits to select one of four output ports. The
flit then arbitrates with the other virtual channels on that input port
and, if it wins the arbitration, is forwarded to the output port. This
arbitration and forwarding takes place in parallel with allocating a
virtual channel and checking available buffer space to reduce
latency. The output port provides a single stage of buffering for
each input port connection. The flits in these buffers arbitrate for
the link to the input controller on the next tile. Credits for buffer
allocation are piggybacked on flits travelling in the reverse direc-
tion.

In our example network, the wires are driven at the same fre-
quency as the input and output controllers. This choice allows for
the simplest possible controller logic, at the expensive of more glo-
bal wiring resources. An alternative architecture could easily drive
the network wires at several times the router frequency, taking
advantage of their available bandwidth. This approach would
reduce global wiring usage with the addition of slightly more con-
troller logic.

2.4 The router uses only a small fraction (6.6%) of
the tile area and some upper-level wires.

The logic of the virtual channel router is very simple, a few
thousand gates along each edge of the tile. Hence the area of the
router is dominated by buffer space. If we provide four flits of
buffering for each of the eight virtual channels with about 300b per

flit (with overhead), the total buffer requirement is about 104 bits
along each edge of the tile. We estimate the logic, driver and

receiver circuits, buffer storage, and routing will occupy an area
less than 50µm wide by 3mm long along each edge of the tile for a

total overhead of 0.59mm2 or 6.6% of the tile area. In addition to
this area, the router also uses about 3000 of the 6000 available wir-
ing tracks on the top two metal layers for routing differential sig-

nals and shields2. This ‘overhead’ replaces the drivers, receivers,
repeaters, and wires for global signals. Thus, the net effect on a
design will be substantially less than this and may even be posi-
tive.

2.5 Networks enable the use of fault-tolerant wir-
ing and protocols

To prevent a single fault in a network wire or buffer from kill-
ing the chip, a spare bit can be provided on each network link and

in each network buffer3. After test, laser fuses are blown (or regis-
ters are set at boot time) to identify any faulty bits. Bit steering
logic then shifts all bits starting at this location up one position to
route around the faulty bit. Similar logic at the endpoint of the link
restores the original positioning of the bits. Although not
employed in our design, the use of link-level error correction
reduces the possibility of a transient fault, with the cost of addi-
tional delay. Alternatively, modules that required transient fault
tolerance could employ end-to-end checking with retry by layering
the checking protocol on top of the network interfaces.

2.6 The network handles both pre-scheduled and
dynamic traffic

On-chip networks must efficiently support both pre-scheduled
and dynamic traffic. For many applications, large data flows are
relatively static and demand high-bandwidth with low latency and
low jitter. For example, a flow of video data from a camera input
to an MPEG encoder is entirely static and requires high-bandwidth
with predictable delay. Such static traffic must share the network
with dynamic traffic, such as processor memory references, that
cannot be predicted before run-time and hence cannot be statically
scheduled. In contrast, most inter-chip networks are used in appli-
cations such as processor-memory interconnect where only
dynamic traffic need be accommodated.

Static and dynamic traffic can be handled together using virtual
channels and a cyclic reservation registers. When the system is
configured, routes are laid out for all of the static traffic and reser-
vations are made for each link of each route by setting entries in
the appropriate reservation register. At run time, a pre-scheduled
packet is sent on a special virtual channel. At each hop, the packet
moves from one link to another without arbitration or delay using
the pre-scheduled reservations. Dynamic traffic arbitrates for the
cycles on each link that are not pre-reserved.Figure 3 Input (top) and output controllers

from
previous

node

to
output
controllers

output
credits

VC
buffers

Controller

VC
state

4

to
next
node

from
input

controllers

output
credits

output
buffers

Controller

2. Depending on process parameters, one or more levels
of repeaters may be required along the 3mm length of
each of these wires for optimum signal velocity.
These repeaters add a small amount to the overhead.

3. If yield analysis indicates that more than one spare bit
is required, multiple spare bits can be provided using
the same method.

3 Challenges in architecture and design
While the same principles apply to interconnection networks at

all scales, on-chip networks have a number of characteristics that
make their design quite different than the inter-chip (and inter-
board) networks that have been designed for years. In particular,
wires and pins are more abundant than in inter-chip networks and
buffers space is less abundant. These differences enable a number
of new network topologies, flow control methods, and other tech-
niques. In particular, we identify three areas that are ripe for future
research:

3.1 What topologies are best matched to the abun-
dant wiring resources available on chip?

On chip networks have enormous wiring resources at their dis-
posal. In the example network described above, there can be up to
6,000 wires on each metal layer crossing each edge of a tile. It is
quite easy to achieve over 24,000 ‘pins’ crossing the four edges of
a tile. In contrast, inter-chip networks have historically been pin
limited, required to limit the connections of one router chip to far
less than 1,000 total pins. This large, 24:1, difference between
router pin limitations allows the designer to trade wiring resources
for network performance, making a qualitative difference in net-
work architecture.

The simple network described above uses two methods to
exploit the large available pin count. First, a wide (almost 300-bit)
flit is sent broadside across router channels to use the maximum
possible number of pins. In contrast, most inter-chip routers use
relatively narrow channels (8-16 bits) to fit into the tight pin con-
straint of a chip package.

Second, a folded torus topology is employed. This topology
has twice the wire demand and twice the bisection bandwidth of a
mesh network. Hence, it effectively converts some of the plentiful
wires into bandwidth. In general, the folded torus topology trades
a longer average flit transmission distance for fewer routing hops.

While these choices of wide, broadside flits and a folded topol-
ogy increase the wire utilization, much room for improvement
remains. There are many alternative topologies and the choice of
a topology depends on many factors.

For example, if power dissipation is critical, a mesh topology
may be preferable to a torus. Simple expressions illustrate the
trade-off of power between the folded torus and a traditional mesh,
wherek is the radix of the network (k = 4 in our 16 tile example):

As shown, the total power required to send a flit through the
network can be decomposed into the power per hop (traversal of
input and output controllers) and power per wire distance traveled.
By substituting approximate equations for the average number of
hops and average transmission distance, average power per flit is
expressed for the mesh and torus. From these expressions, if wire
transmission power dominates per hop power, the mesh is more
power efficient.

Our estimates do show that wire transmission power is signifi-
cantly greater than per hop power for our 16 tile network. How-
ever, in our example, the power overhead of the torus is small, less
than 15%, and is outweighed by the benefit of the larger effective
bandwidth of the torus.

3.2 What flow control methods reduce buffer count
and hence router overhead?

Buffer space in an on-chip router directly impacts the area over-
head of the network and thus must be kept to a minimum. In con-
trast, most inter-chip network routers are pin limited and thus have
ample room for very large buffers.

Our example network uses conventional virtual channel flow
control and uses a large amount of buffer space: 10K bits in each
input controller. Alternative flow control methods can substan-
tially reduce the buffer storage requirements at the expense of
reduced performance. For example, if packets are dropped or mis-
routed when they encounter contention very little buffering is
required. However, dropping and misrouting protocols reduce per-
formance and increase wire loading and hence power dissipation.
Research is required to invent and explore flow-control methods
that strike the right balance between buffer requirements, perfor-
mance, control complexity, and power.

3.3 What circuits best exploit the structured wiring
of on-chip networks?

Much of the advantage of on-chip networks derives from the
regular, structured nature of their wiring. As described below, the
well controlled electrical parameters of this wiring enable the use
of high-performance circuits such as pulsed low-swing drivers and
receivers to reduce power dissipation, reduce latency, and increase
repeater spacing. While these transceivers yield big performance
dividends, they only scratch the surface of what is possible. Addi-
tional circuit innovations can improve the performance of on-chip
networks substantially.

Circuits can be used to boost the bandwidth of individual wires
by sending several bits each clock cycle. In 0.1µm technology, it
is feasible to transmit 4Gb/s per wire. This translates to 2-20 bits
per clock cycle depending on whether the chip uses an aggressive
(2GHz) or slow (200MHz) clock. Circuits here are needed both to
drive and receive the line at these high rates, to provide timing for
the link, and to interface the high-frequency timing domain of the
link to the low-frequency timing domains of the tiles. For general-
ity it is necessary to support tiles operating at different frequencies.

Circuits can also ease the area overhead of buffering by inte-
grating buffer storage into the drivers, receivers, and repeaters.
Such integrated buffers directly replace area-consuming buffers in
the input and output controllers. They also have the potential of
reducing the overall need for buffers by closing flow control loops
locally so credits can be quickly recycled [4].

4 Discussion
The on-chip network sketched above can provide very general

communication services for its clients. Compared to dedicated
wires, however, it incurs some overhead. Area (6.6%) is expended
for the routers and additional data is transported in the packet con-
trol fields. Why then should one use an on-chip net-work and

Ptotal hops Phop⋅ dist Pwire⋅+=

Pmesh k
2
3
--- Phop

2
3
--- Pwire⋅+⋅ÿ þ

� �⋅≈

Ptorus k
1
2
--- Phop

k 1–
k

-----------P
wire

+⋅ÿ þ
� �⋅≈

incur these overheads rather than use dedicated wiring? There are
several compelling reasons to use these networks that more than
justify this small overhead.

4.1 Predictable electrical parameters enable high-
performance circuits

While dedicated, per-design global wiring provides ultimate
flexibility, the practical problems associated with electrically char-
acterizing this wiring and it’s potential late-stage impact make the
cost associated with this flexibility far outweigh any benefits. Top-
level interconnect on conventional integrated circuits consists of a
set of dedicated global wires that span large distances across the
chip. These wires are typically laid out by an auto-router late in
the design. The continued viability of this methodology is chal-
lenged by several difficult electrical problems.

First, unstructured wires have parasitic capacitance and
crosstalk to adjacent wires, which is difficult to predict early in the
design process and may differ significantly from one run of the
router to the next. Because their electrical properties are poorly
characterized, very conservative circuits must be used to drive and
receive these wires. Typically, full-swing static CMOS gates (or
inverters) are employed to achieve good noise immunity at the
expense of increased delay and high power dissipation. Com-
pounding this inefficiency, synthesis tools size drivers according to
a statistical wire model that oversizes most of the drivers but
undersizes enough of the drivers to make timing closure a difficult
problem. Second, long wires require repeaters at periodic intervals
to keep their delay linear (rather than quadratic) with length. Prop-
erly placing these repeaters is difficult and places additional con-
straints the auto-router. Finally, all of these problems only become
more complex with each successive technology scaling.

In contrast, an on-chip interconnection network structures the
top-level wiring of an integrated circuit. The paths between tiles
are precisely defined at the beginning of the design process. More-
over, these paths can be optimized for their signal integrity charac-
teristics. In particular, the structured wiring can be isolated from
intra-tile wiring to make both noise and delay variation due to
crosstalk negligible. The result is that the L, R, and C parameters
of all top-level wires can be controlled to provide low-noise and
excellent signal propagation properties. Also, knowing these
parameters at the beginning of the design process allows architects
to account for global wiring delays, minimizing late-stage design
iterations due to timing “surprises”.

Predictable wires with low noise also enable the use of aggres-
sive circuit techniques to reduce the power and improve the perfor-
mance of global interconnects. For example, pulsed low-swing
drivers and receivers [3] (Chapter 8) can be used to drive each of
the 3mm wires across tiles (input to output controller) and between
tiles (output to input controller). These low-swing circuits provide
three significant advantages. First, by using 100mV or less of sig-
nal swing, they reduce power by an order of magnitude compared
to 1.0V full swing signaling in our 0.1µm process. Second, by
overdriving the transmit end of the wire, they produce about three
times the signal velocity of a full-swing driver. This greatly
increased signal velocity compensates for the overhead of the rout-
ing logic. In fact, with efficient pre-scheduled flow control, the
latency of a signal transported over an on-chip network could be
lower than a signal transported over a dedicated full-swing wire

with optimum repeatering. Finally, the overdrive also increases
the optimum repeater spacing by about 3x. This simplifies layout
and reduces the area overhead of global signals. For many 0.1µm
processes, this will make it possible to traverse a 3mm tile without
the need for an intermediate repeater. As described above, we also
expect that the use of aggressive circuits will enable higher band-
width to be achieved per wire and will reduce the area burden of
buffer storage.

4.2 Facilitating reuse with a universal interface
By defining a standard interface, an on-chip network facilitates

the development and employment of reusable system components.
All components, such as microprocessors or peripheral controllers,
which are designed to be compatible with a single network inter-
face, are interoperable. If these modules were instead directly con-
nected over a non-standard interface, a different peripheral
controller would need to be designed for each such interface. The
interoperability advantage of standard hardware interfaces has
been used for many years in board-level systems where standards
like S-100, VME, SCSI, and PCI have allowed single modules to
be reusable across a wide variety of systems. Similar ideas are
beginning to gain acceptance with the recent introduction of stan-
dard on-chip bus interfaces [1][5][8]. A standard network offers
the same features, but with greater scalability and performance
than a bus.

A potential drawback of using a standard interface is the ineffi-
ciency introduced if clients are transmitting flits with small data
payloads compared to the size of the flit. For example, our net-
work has 256-bit wide flits, but it is reasonable to assume not all
client transfers will be this wide. A simple solution is to partition
the width of the interface into several separate physical networks.
Each partition of the interface will require its own control signals,
so some additional signal overhead is introduced over the original,
wider interface. So, for example, we could split our 256-bit flit
into eight, 32-bit flits and duplicate the control signals eight times.
Wide flits could still be transferred by using several of the 32-bit
interfaces in parallel, but smaller flits would now only use a frac-
tion of the total interface bandwidth.

4.3 Extending reuse to the network
In addition to simplifying the reuse of design modules, the on-

chip network itself, including the routers and top-level metal lay-
out, is a reusable component. Because the network can be reused
across a wide range of designs, the designer can afford to dedicate
more resources to its design, validation, and tuning than is practi-
cal to apply to the top-level wiring of any single design. This addi-
tional optimization combined with the regular structure of the
wiring further allows the designer to extract more bandwidth and
lower latencies with lower power than is possible with dedicated
wiring.

However, fixing the size of a tile can potentially waste die area
if client modules only occupy a fraction of their tile’s area. Unless
the design is pin-limited, unused die area would result in a larger
die, increasing per-chip cost and reducing gross margin. This
increase in chip area affects the number die per wafer, but does not
impact yield since empty silicon is not vulnerable to defects.

For a low-volume part, or even the first spin of a high-volume
part, design time is almost always more important than chip cost.

In this case, if the network reduces design time by eliminating the
need to do dedicated top-level wiring, then the reduction in die per
wafer is acceptable. For a high-volume part, die area can be
reduced by compacting the tiles. An optimal compaction may
require moving client modules so that all of the big (small) clients
are in the same row or column.

4.4 On-chip networks improve the duty factor of
wires

Often key portions of chips are limited by wire density. Yet, the
average wire on a typical chip is used (toggles) less than 10% of
the time. Thus, this critical resource is being underutilized. Each
dedicated wire or bus is needed to operate a full speed some of the
time, but most of the time they may be idle.

A network solves this problem by sharing the wires across
many signals. This averages out the demand and results in a much
higher duty factor for this scarce resource. Pre-scheduling of criti-
cal communications and priority scheduling of other traffic pre-
vents this resource sharing from increasing the latency of the most
critical signals. The use of aggressive circuit design allows us to
operate on-chip networks with very high duty factors - over 100%
if we transmit several bits per cycle - without collapsing the power
supply. If full-swing global wires were operated at this rate, care-
ful attention would be required to prevent the resulting large cur-
rent draw from collapsing the power supply voltage [3] (Chapter
5).

5 Conclusion
Using an on-chip interconnection network to replace top-level

wiring has advantages of structure, performance, and modularity.
A network structures the top-level wires simplifying their layout
and giving them well-controlled electrical parameters. These well
controlled electrical parameters in turn enable the use of high-per-
formance circuits that result in significantly lower power dissipa-
tion, higher propagation velocity, and higher bandwidth that is
possible with conventional circuits. In many applications the
improvements in performance due to these aggressive circuits

more than offset the performance lost to network overhead. Band-
width is also enhanced by sharing network channels across all cli-
ents. In contrast, dedicated wiring often leaves many wiring
resources idle at times of peak load. Also, an on-chip network,
like popular system-level buses, enhances modularity by provid-
ing a standard interface.

While on-chip networks leverage many years of research in
inter-chip networks, many challenges remain in adapting these net-
works to the unique opportunities and constraints of intra-chip
communication. Topologies must balance power efficiency with
wire utilization. New flow control methods are required to reduce
the buffer sizes, and hence the area overhead of these networks
while maintaining high wire- and power-efficiency. These flow
control methods must also seamlessly handle a combination of
statically scheduled and dynamic traffic. The network interface
must be simple yet able to support a wide variety of higher-level
protocols and a wide variety of data widths with low overhead.

References
[1] “The CoreConnectTM Bus Architecture” IBM, 1999,

http://www.chips.ibm.com/products/coreconnect/docs/crcon_wp.pdf.
[2] DALLY, WILLIAM J., “Virtual Channel Flow Control.”IEEE Transac-

tions on Parallel and Distributed Systems, March 1992, pp. 194-205.
[3] DALLY, WILLIAM J., AND POULTON, JOHN W., Digital Systems Engi-

neering, Cambridge University Press, 1998.
[4] MIZUNO, MASAYUKI AND DALLY, WILLIAM J., “Elastic Interconnects:

Repeater-Inserted Long Wiring Capable of Compressing and Decom-
pressing Data,”2001 ISSCC, February, 2001, pp. 346-347.

[5] “Open Core ProtocolTM Data Sheet” Sonics, Inc.,
http://www.sonicsinc.com/Documents/OpenCoreProtocol_DS.pdf.

[6] PEH, LI-SHIUAN AND DALLY, WILLIAM J., “A Delay Model and Spec-
ulative Architecture for Pipelined Routers.”Proceedings of the 7th
International Symposium on High-Performance Computer Architec-
ture, Jan. 2001, pp. 255-266.

[7] SEITZ, CHARLES, “Let's Route Packets Instead of Wires.”Advanced
Research in VLSI: Proceedings of the Sixth MIT Conference, 1990,
pp. 133-138.

[8] VSI Alliance, http://www.vsi.org.

