
26

Buses and crossbars have tradition-
ally served as the communication fabrics of
computer systems, network switches and
routers, and other digital systems. However,
demand for communication bandwidth is
overwhelming the limits of these fabrics, and
interconnection networks, historically used in
high-end multiprocessor systems,1-3 have sur-
faced as an alternative. In recent years, inter-
connection network fabrics have been
deployed in high-speed network switches4 and
high-bandwidth core Internet routers.5

These interconnection networks’ perfor-
mance critically depends on the performance
of the routers from which they are construct-
ed. Armed with accurate router performance
models, interconnection network architects
can optimize and fine-tune router parameters
before starting detailed design.

This article introduces a router delay model
that takes into account the pipelined nature
of contemporary routers and proposes
pipelines matched to the specific flow control
method employed. Given the type of flow
control (see the “What is flow control?” side-
bar) and router parameters, the model returns
router latency in technology-independent
units and the number of pipeline stages as a
function of cycle time.

We apply this model to derive realistic
pipelines for wormhole and virtual-channel
routers and compare their performance. Con-

trary to the conclusions of previous models,
our results show that the latency of a virtual-
channel router doesn’t increase as we scale the
number of virtual channels up to 8 per phys-
ical channel. Our simulation results also show
that a virtual-channel router gains through-
put of up to 40% over a wormhole router.

Compared with the commonly assumed
unit-latency model, which ignores imple-
mentation complexity and assumes router
latency to be a single cycle, our model shows
significant performance differences: 56% in
zero-load latency and 30% in throughput.
This highlights the importance of consider-
ing implementation costs when simulating
router performance.

Previous models
Chien6 first noted the need for router delay

models that consider implementation com-
plexity and proposed a model for wormhole
and virtual-channel routers. Chien’s model
uses the router architecture shown in Figure 1,
which was employed in the Torus Routing
Chip,7 for all routers regardless of the flow
control method. It defines per-hop router
latency as the total delay of the functions on
the critical path. These functions are address
decoding (AD), routing and crossbar arbitra-
tion (RA), crossbar traversal, and virtual-chan-
nel allocation (VC). Through detailed
gate-level design and analysis, Chien express-

Li-Shiuan Peh
William J. Dally
Stanford University

GIVEN ROUTER PARAMETERS, THIS DELAY MODEL PRESCRIBES REALISTIC

PIPELINES, ENABLING ROUTER ARCHITECTS TO OPTIMIZE NETWORK

PERFORMANCE BEFORE BEGINNING ACTUAL DETAILED DESIGN.

0272-1732/01/$10.00  2001 IEEE

A DELAY MODEL FOR ROUTER
MICROARCHITECTURES

es these functions’ delays in parameterized
equations grounded in a 0.8-micron CMOS
process. By substituting the parameters of a
given router into Chien’s equations, a design-
er can obtain estimates of router latency in the
0.8-micron process.

However, although most contemporary
routers are heavily pipelined, Chien’s model
doesn’t account for pipelining, assuming
instead that the entire critical path fits with-
in a single clock cycle. Therefore, Duato and
Lopez8 proposed an extension of Chien’s
model to pipelined routers. Their model
prescribes a fixed three-stage pipeline. The
routing stage contains the address decoding,
routing, and arbitration functions of Chien’s
model; the switching stage includes cross-
bar traversal; and the channel stage includes
virtual-channel allocation and internode
delay.

But these models have significant short-
comings. First, they both assume that clock
cycle time depends solely on router latency.
In practice, routers are heavily pipelined, mak-
ing cycle time largely independent of router
latency. Typically, router designers must work
within the limits of a clock cycle determined
by factors beyond the router, such as the fun-
damental limits of chip-to-chip signaling or
the processor clock cycle. A realistic delay
model must work in an environment where
the cycle time is fixed and the number of
pipeline stages is variable.

Second, these models also attempt to fit all
routers into a single canonical architecture,
resulting in a mismatch between the archi-
tecture and the flow control method. For
instance, crossbar passage is arbitrated on a
per-packet basis and held throughout a pack-
et’s duration. This prompts the need for a
huge crossbar in a virtual-channel router, with
the number of ports equal to the total num-
ber of virtual channels. The result is unneces-
sary delay in the crossbar arbitration and
traversal functions. Buffering flits (parts of
packets) at virtual-channel controllers, whose
arbitration delay increases with the number
of virtual channels, also adds needless cost to
a virtual-channel router.

27JANUARY–FEBRUARY 2001

What is flow control?
In an interconnection network, routing policy determines the path a packet takes from

source to destination, while flow control policy determines how the packet moves along the
path. By governing when packets receive buffers and channels, flow control policy significantly
shapes an interconnection network’s performance. A poor flow control policy can result in a
network that saturates at 30% capacity, whereas a good flow control policy enables a net-
work to operate at 80% or higher capacity.

Dally and Seitz first introduced wormhole flow control to enable fast single-chip routers
to be built in 1986 technology.1 It improves upon prior flow control policies by allocating
buffers and channels to flits instead of packets. A flit, which is a part of a packet, can leave
for the next hop once buffering is available to hold the flit. For the same amount of storage,
this results in lower latency and greater throughput, since a flit need not wait for enough
buffering for the entire packet. However, wormhole flow control uses channels inefficiently.
Although buffers are allocated in flit-size units, a physical channel is held for the duration of
a packet. As a result, when a packet is blocked, all physical channels held by this packet are
left idle, and other packets queued behind the blocked packet are unable to use the idle
channels.

Virtual-channel flow control alleviates this problem by associating several virtual chan-
nels, each with a separate flit buffer queue, with a physical channel.2 Thus, when a packet
blocks while holding a virtual channel, other packets can still traverse the physical channel
through other virtual channels, leading to higher throughput.

The Myrinet high-speed switch3 is an example of a straight wormhole router; the Cray
T3E router4 and the Avici Terabit Switch/Router5 are examples of virtual-channel routers.

References
1. W.J. Dally and C. Seitz, “The Torus Routing Chip,” Distributed Computing, vol.

1, no. 3, 1986, pp. 187-196.
2. W.J. Dally, “Virtual-Channel Flow Control”, IEEE Trans. Parallel and Distributed

Systems, vol. 3, no. 2, Mar. 1992, pp. 194-205.
3. N.J. Boden et al., “Myrinet—A Gigabit-per-Second Local-Area Network,” IEEE

Micro, vol. 15, no. 1, Feb. 1995, pp. 29-36.
4. Cray Inc., http://www.cray.com/products/systems/crayt3e/paper1.html.
5. Avici Systems Inc., http://www.avici.com.

AD
FC

AD
FC

AD
FC

AD
FC

AD
FC

VC
(V)

VC
(V)

VC
(V)

VC
(V)

VC
(V)

AD
FC

Crossbar
(P)

RA (F)

Figure 1. Canonical router architecture pro-
posed in Chien’s model. The delay model’s
parameters are P, the number of ports on the
crossbar; F, the number of output route
choices; and V, the number of virtual chan-
nels per physical channel.

Proposed model
Our proposed router delay model consists

of a general router model and a specific router
model. The general model outlines a design
methodology for pipelining a router given a
clock cycle time, using delay estimates derived
by the specific model.

General router model
To illustrate how the model works, we apply

it here to wormhole and virtual-channel
routers. We start with the definition of canon-
ical router architectures suited for each flow
control method.

Canonical router architectures. Figure 2 illus-
trates the canonical wormhole router archi-
tecture. The parameters affecting the delay of
a wormhole router’s various modules are p, the
number of physical channels, and w, the chan-
nel width.

Consider a two-flit packet, consisting of one
head flit and one tail flit, traversing the canon-
ical wormhole router of Figure 2 from the
injection input channel to the eastern output
channel. The packet proceeds through the
states of routing, switch arbitration, and switch
traversal. When the head flit arrives, the input
controller decodes its type field. Finding it a
head flit, the input controller forwards the des-
tination field to the routing logic, buffers the
entire flit in the input queue, and sets the chan-
nel state (PC state) to routing.

The routing logic returns the output port
for this packet—in this case, the eastern out-
put port. At this point, the input controller
sets the channel state to switch arbitration and

sends a request for the eastern
output port to the global
switch arbiter. The global
switch arbiter receives arbi-
tration requests from all input
controllers, resolves con-
tention, and assigns available
output ports to the
requesters. In this case, the
arbiter grants the eastern out-
put port to the request from
the injection input channel
and marks this output port as
unavailable to other requests.

Upon receipt of this grant
from the global switch arbiter,

the input controller sets the injection input
channel’s state to switch traversal. If a free
buffer is available on the next hop to hold the
flit, the input controller reads the packet’s
head flit from the input queue and sends it
through the crossbar. The switch arbiter sets
the crossbar configuration; in this example, it
has connected the injection input port to the
eastern output port. Thus, the head flit tra-
verses the crossbar and proceeds over the out-
put link for the next hop.

When the next flit arrives, the input con-
troller decodes its type field and finds it to be
a tail flit. Since it isn’t a head flit, it needn’t go
through routing or switch arbitration. Instead,
the input controller simply buffers it in the
input queue and sends it to the output port
reserved by the head flit. When the tail flit
leaves the input queue, it releases the resources
held by the packet by setting the channel state
to idle and signaling the global switch arbiter
to free the reserved output port.

Whenever a flit leaves, the number of buffers
on the next hop is decremented, and a credit
is returned to the previous hop, prompting its
next-hop buffer count to be incremented.

Figure 3 shows the canonical router archi-
tecture for virtual-channel flow control. Its
additional parameter is v, the number of vir-
tual channels per physical channel. This archi-
tecture differs from that proposed in Chien’s
model, adopting a more efficient design in
which crossbar ports are shared across the vir-
tual channels of a physical channel and allo-
cated flit by flit. Hence, instead of a crossbar
with pv ports, our architecture has a crossbar
with just p ports.

28

ROUTER DELAY MODEL

IEEE MICRO

 PC
state

Routing logic

Switch arbiter (p)

p-by-p
crossbar
switch
(p, w)

Credits in

Flits out

Credits out

Flits in

Buffers

Input controller (1…p)

Figure 2. Canonical wormhole router architecture, with p physical channels, each w bits wide.

The virtual-channel router
has a separate input queue
and a separate copy of the
channel state (VC state), for
each virtual channel. When
the packet’s head flit arrives at
the injection channel’s input
controller, the controller
decodes the flit’s virtual-chan-
nel identifier (VCID) field
and buffers the entire flit in
the appropriate flit queue.

Consider the same two-flit
packet flowing through a vir-
tual-channel router. The
packet proceeds through rout-
ing, switch arbitration, and
traversal as described earlier,
with the addition of a virtual-
channel allocation state.
Assuming the head flit has
VCID 0, the input controller
then injects the packet into virtual channel 0
(VC 0) of the injection channel and buffers it
accordingly into queue 0. Then, VC 0 enters
the routing state and sends the flit’s destina-
tion field to the routing logic, which returns
the output virtual channels (not physical chan-
nels) that the packet can use.

When the input controller receives these
output virtual channels from the routing
logic, it sets VC 0’s state to virtual-channel
allocation. VC 0 then requests these output
virtual channels from the global virtual-chan-
nel allocator. The global virtual-channel allo-
cator collects all the requests from each input
controller and returns available output virtu-
al channels to successful requesters. It also
updates the status of these output virtual
channels as unavailable.

When VC 0 is allocated an output VC—
say, output VC 1 of the eastern port—the head
flit proceeds to the next step and sends requests
for the eastern output port to the global switch
allocator if the next-hop buffer count for VC
1 is not zero. Instead of reserving output ports
for a packet’s entire duration, the virtual-chan-
nel router’s switch allocator allocates crossbar
passage to flits of different packets on a cycle-
by-cycle basis. Once this head flit secures pas-
sage to the eastern output port, it leaves for the
crossbar and goes to the next hop, with its
VCID field updated to VC 1.

Each time a flit leaves, the buffer count for
its output VC—VC 1 in this example—is
decremented. A credit containing the input
VC—VC 0 in this case—is sent to the previ-
ous router, prompting it to increment its
buffer count.

When the subsequent tail flit arrives, the
input controller enqueues it according to its
VCID field. It then inherits the output VC
reserved by its head flit and submits a request
to the global switch allocator for the eastern
output port. Once granted crossbar passage, it
signals the virtual-channel allocator to release
the reserved output VC and leaves for the next
hop, with its VCID field updated to VC 1.
Note that in this canonical architecture, the
function of multiplexing virtual channels onto
a physical channel falls on the switch alloca-
tor, instead of the virtual-channel controllers
of Chien’s architecture.

Atomic modules and dependencies. The canon-
ical router architectures in Figures 2 and 3
include modules that are not easily pipelined
because they contain state that depends on the
module output. These modules, which we call
atomic modules in our model, are best kept
intact within a single pipeline stage. An exam-
ple of an atomic module is the virtual-chan-
nel allocator in a virtual-channel router. If this
module straddles multiple pipeline stages,

29JANUARY–FEBRUARY 2001

Virtual channel
allocator

(p, v)

VC
state (1…v)

Routing logic

Switch allocator
(p, v)

p-by-p
crossbar
switch
(p, w)

Credits in

Flits out

Credits out

Flits in

Buffers (1…v)

Input controller (1…p)

Figure 3. Canonical virtual-channel router architecture, with p physical channels, each w bits
wide, and v virtual channels per physical channel. The boldface arrows represent v requests or
responses.

grants may not be reflected correctly before
the next allocation. Although there are many
ways to pipeline a virtual-channel allocator if
it requires more than a single clock cycle, per-
formance will usually suffer. Another module
that should remain within a single pipeline
stage is a separable allocator. This atomic
module has a large number of wires connect-
ing the input and output ports, which will
require excessive latching if the allocator is
partitioned across multiple pipeline stages.

Figure 4 shows the various atomic modules
of wormhole and virtual-channel routers in
our model. These atomic modules’ inputs can
depend on another module’s outputs. Such
dependencies determine a router’s critical path.
Figures 4a and 4b show the basic dependen-
cies of wormhole and virtual-channel routers.
(Because we are emphasizing a comparison of
flow control techniques, we view routing as a
black box and assume that decoding and rout-
ing take one clock cycle.)

Sometimes, speculation can avert these
dependencies. For instance, the switch allo-
cator in a virtual-channel router can specula-
tively assume that the packet will succeed in
obtaining a free output virtual channel from
the virtual-channel allocator. Thus, it can
request the desired output port before it has
secured an output virtual channel. Should the
speculation be incorrect, the reserved cross-
bar passage will be wasted. With speculation,
a virtual-channel router removes the depen-
dency between the virtual-channel allocation
and switch allocation modules and cuts down
on its critical path delay, as Figure 4c shows.
In this article, we model only basic wormhole

and virtual-channel routers.
We present the details of a
speculative virtual-channel
router in another publica-
tion,9 where we show that a
speculative virtual-channel
router’s latency can be
reduced to that of a worm-
hole router.

Pipeline design. To arrive at a
realistic pipeline design, we
model the delay of each
atomic module with para-
metric equations derived by
the specific router model.

The specific router model generates two delay
estimates: latency (ti) and overhead (hi).
Latency spans the time beginning when
inputs are presented to the module and end-
ing when the outputs needed by the next
module are stable. Overhead is the delay
expended by additional circuitry required
before the next set of inputs can be present-
ed to the module. In a switch arbiter, for
instance, latency spans from the point when
requests for switch ports are presented to the
point when grant signals are stable. Overhead
is the delay that occurs when the arbiter
updates priorities between requesters in
preparation for the next set of requests.

Armed with ti and hiof each atomic module
on the critical path and the clock cycle time clk,
the model prescribes the router’s pipelining as
follows: Given a, the first atomic module, and
b, the last atomic module in the pipeline stage,

Specific router model
We use the specific router model to derive

the parameterized delay equations for atomic
modules. We base our specific delay model on
the theory of logical effort10 proposed by
Sproull and Sutherland for estimating circuit
delay and guiding the design of minimum-
delay circuits.

In the following equation, we calculate cir-
cuit delay T (in τ, the delay of an inverter with
identical input capacitance11) along a path as

t h clk

t h clk t h clk

i b

i a

b

i b

i a

b

i b

i a

b

+ ≤

+ > + >

∑

∑ ∑+

+

−

and

and

=

= =

1

1

1

30

ROUTER DELAY MODEL

IEEE MICRO

Switch arbitration CrossbarDecode + routing

Switch allocation CrossbarDecode + routing VC allocation

Speculative switch allocation

CrossbarDecode + routing
VC allocation

(a)

(b)

(c)

Figure 4. Atomic modules and dependencies of a wormhole router (a), a virtual-channel router
(b), and a speculative virtual-channel router (c).

the sum of the path’s effort delay (Teff) and par-
asitic delay (Tpar). The effort delay of each
stage is the product of logical effort and elec-
trical effort. Logical effort is the ratio of a log-
ical function’s delay to the delay of an inverter
with identical input capacitance. Electrical
effort is the fan-out, or the ratio of output
capacitance to input capacitance. Parasitic
delay is the intrinsic delay of a gate due to its
own internal capacitance and is expressed rel-
ative to an inverter’s parasitic delay.

where gi is the logical effort per stage, hi is the
electrical effort per stage, and pi is the para-
sitic delay per stage.

Table 1 lists the technology-independent
parameterized delay equations for each atom-
ic module. The gate-level circuit designs of each
module and the analysis and derivation of these
parameterized delay equations are presented in
detail in another publication.12 In brief, we used
separable allocators and the matrix arbiter. We
validated projections of the model against a
projection estimated by a Synopsys timing ana-
lyzer in a 0.18-micron technology and found
them to be close—within 2τ4.

Pipeline latency results
Figure 5 (next page) details the effect of dif-

fering numbers of physical and virtual chan-
nels on the per-node latency of a

virtual-channel router, with a typical clock
cycle of 20τ4 (τ4 is the delay of an inverter dri-
ving four other inverters11). For a two-dimen-
sional virtual-channel router with five physical
channels, four pipeline stages are sufficient for
up to eight virtual channels per physical chan-
nel. Thus, overall per-node latency doesn’t
increase as the number of virtual channels
increases from two to eight. With a three-
dimensional network, a virtual-channel router
with seven physical channels incurs the same
per-node latency of four cycles (from its four
pipeline stages) for up to eight virtual chan-
nels per physical channel.

These projections indicate that a virtual-
channel router typically requires just one more
pipeline stage than a wormhole router (a spec-
ulative virtual-channel router can have the
same per-hop latency as a wormhole router).
Also, with most practical numbers of virtual
channels used in virtual-channel routers to
date, the delay remains unchanged.

Simulation results
Guided by the pipelined designs prescribed

by the model, we crafted detailed Verilog code
for wormhole and virtual-channel routers and
performed simulations to determine their
latency-throughput characteristics. Again, we
assumed a typical clock cycle of 20τ4. The sim-
ulator generated uniformly distributed traffic
across an eight-by-eight mesh network to ran-
dom destinations. Each simulation ran for a
warm-up phase of 10,000 cycles. Then, we

T T T

g h pi i i

= +

= +∑ ∑
eff par

31JANUARY–FEBRUARY 2001

Table 1. Parameterized delay equations (in τ) for wormhole and virtual-channel routers (1τ4 = 5τ).

Synopsys timing

Model (τ4) analyzer (τ4)

Module Parameterized delay equations (in τ) (p = 5; w = 32; v = 2; clk = 20τ4)

Wormhole router

Switch arbiter (swarb) tswarb (p) = 21 (1/2) log4 p + 14(1/12) 9.6 9.9
hswarb (p) = 9

Crossbar traversal (xbar) txbar (p, w) = 9 log8 (w  p/2 ) + 6 log2 p + 6 8.4 10.5
hxbar (p, w) = 0

Virtual-channel router

Virtual-channel allocator tvcalloc (p, v) = 33 log4 pv + 20(5/6) 16.9 15.3
(vcalloc) hvcalloc (p, v) = 9

Switch allocator (swalloc) tswalloc (p,v) = 11(1/2) log4 p + 23 log4 v + 20(5/6) 10.9 12.0
hswalloc (p,v) = 9

Crossbar traversal (xbar) txbar (p, w) = 9 log8 (w  p/2 ) + 6 log2 p + 6 8.4 10.5
hxbar (p, w) = 0

injected 100,000 packets and ran the simula-
tion until these packets were all received.

Throughout the simulation, a constant-rate
source injects five-flit packets at a percentage
of the network’s capacity, and the average
latency of a packet is calculated. Latency of a
packet begins the instant the packet’s first flit
is created and ends when its last flit is ejected
at the destination node, including source
queuing time and assuming immediate ejec-
tion. Each router uses credit-based flow con-
trol to regulate buffer use, and propagation
delay across the channel is assumed to take a
single cycle. Because the purpose of our sim-
ulations was to explore the performance of
flow control strategies, we chose simple
dimension-ordered routing.

Performance comparisons
Figure 6 shows the latency-throughput

curves of wormhole and virtual-channel
routers with eight buffers per input port. The
wormhole router uses a three-stage pipeline,
whereas the virtual-channel router is pipelined
over four stages at each hop. Therefore, the

32

ROUTER DELAY MODEL

IEEE MICRO

140

120

100

80

60

40

20

0

La
te

nc
y

(c
yc

le
s)

0 0.1 0.2 0.3 0.4 0.5

Traffic (fraction of capacity)

0.6 0.7 0.8

WH (8 buffers)

VC (2 VCs ×
4 buffers)

Figure 6. Latency-throughput curves of wormhole and virtual-channel routers
with eight buffers per input port. The routers follow the proposed pipeline
router model.

Figure 5. Effect of p, the number of physical channels (PCs), and v, the number of virtual channels (PCs), on per-node latency of
virtual-channel routers. We assumed a typical clock cycle of 20τ4. Each bar represents the router pipeline, with the shaded
regions corresponding to the fraction of clock cycle time used by each atomic module and the idle time left unshaded.

5

4

3

2

1

0

P
er

-n
od

e
la

te
nc

y
(n

um
be

r
of

 c
yc

le
s)

Wormhole 2 VCs,
5 PCs

4 VCs,
5 PCs

8 VCs,
5 PCs

16 VCs,
5 PCs

32 VCs,
5 PCs

2 VCs,
7 PCs

4 VCs,
7 PCs

8 VCs,
7 PCs

16 VCs,
7 PCs

32 VCs,
7 PCs

Route + decode
VC allocation

Switch arbitration/allocation
Crossbar traversal

Wormhole flow control

base latency of the wormhole router (29
cycles) is lower than that of the virtual-chan-
nel router (36 cycles), However, virtual-chan-
nel flow control with two virtual channels
extends the throughput achieved by worm-
hole flow control by 25% from 40% capaci-
ty to 50% capacity.

With 16 buffers per input port, we observed
similar effects, shown in Figure 7. Again, a vir-
tual-channel router has a higher base latency
(35 cycles) than that of a wormhole router, as
a result of the additional pipeline stage per hop.
However, the throughput advancement is large;
a virtual-channel router with two virtual chan-
nels enjoys a throughput of 65% capacity, a
30% improvement over the wormhole router’s
50% capacity. With four virtual channels,
throughput increases to 70% capacity, a 40%
improvement over wormhole flow control.

Single-cycle router latency
Most published research comparing the

performance of different router designs
assumes single-cycle router latency, without
taking into account the effect of implemen-
tation complexity and cost. To quantify this
effect, we ran simulations with a cycle-accu-
rate C simulator that assumes single-cycle
router latency for both wormhole and virtu-
al-channel flow control. All other experimen-
tal parameters were identical to those of the
Verilog simulator.

As Figure 8 shows, assuming single-cycle
router latency results in both wormhole and
virtual-channel routers’ incurring the same
low base latency of 16 cycles. In contrast, sim-
ulations that follow our proposed multiple-
cycle pipeline design demonstrate the higher
base latency incurred by virtual-channel flow
control because of its longer pipeline.

It is also apparent that assuming single-cycle
router latency results in inflated throughput
figures. This is because throughput in worm-
hole and virtual-channel flow control is strong-
ly influenced by buffer utilization. Buffer
utilization depends on how quickly the router
can send and receive credits, prompting the
reuse of buffers. In the simulations assuming
single-cycle routing latency, a credit can be sent
and received in two cycles. In our pipelined
model, a wormhole router needs four cycles
for credit turnaround, and a virtual-channel
router needs five cycles. Thus, throughput is

lower in the pipelined model than in one that
ignores implementation delay.

Motivated by the proposed delay model,
we uncovered a more efficient microar-

chitecture for virtual-channel routers, using
speculation to shorten the critical path.9 This
reduces a virtual-channel router’s latency to
that of a wormhole router, and further increas-
es its throughput.

The proposed delay model can be extend-

33JANUARY–FEBRUARY 2001

140

120

100

80

60

40

20

0
La

te
nc

y
(c

yc
le

s)
0 0.1 0.2 0.3 0.4 0.5

Traffic (fraction of capacity)

0.6 0.7 0.8

VC (2 VCs ×
8 buffers)

VC (4 VCs ×
4 buffers)

WH (16 buffers)

Figure 7. Latency-throughout curves of wormhole and virtual-channel routers
with 16 buffers per input port. The routers are pipelined as prescribed by the
proposed pipelined router model.

140

120

100

80

60

40

20

0

La
te

nc
y

(c
yc

le
s)

0 0.1 0.2 0.3 0.4 0.5

Traffic (fraction of capacity)

0.6 0.7 0.8

WH (8 buffers)
(single-cycle)

VC (2 VCs × 4 buffers)
(single-cycle)

VC (2 VCs × 4 buffers)

WH (8 buffers)

Figure 8. Performance of wormhole and virtual-channel routers, as modeled
by the proposed pipelined delay model, and as modeled with single-cycle
router delay (eight buffers per input port).

ed in many interesting directions. Whereas
the model currently supports only wormhole
and virtual-channel flow control, we are in the
process of applying it to flit-reservation flow
control.13 It can also be expanded to cover
other topologies and routing policies, such as
adaptive routing. While router latency holds
the key to network performance, a router’s
area or power dissipation may be critical for
certain applications of interconnection net-
works. Hence, incorporating area and power
projections into our delay model will be excit-
ing future work. MICRO

References
1. J. Duato, S. Yalamanchilli, and L. Ni,

Interconnection Networks—An Engineering
Approach, IEEE CS Press, Los Alamitos,
Calif., 1997.

2. M. Galles, “Spider: A High-Speed Network
Interconnect,” IEEE Micro, vol. 17, no. 1,
Feb. 1997, pp. 34-39.

3. Cray Inc., http://www.cray.com/products/
systems/crayt3e/paper1.html.

4. N.J. Boden et al., “Myrinet—A Gigabit-per-
Second Local-Area Network,” IEEE Micro,
v. 15, no. 1, Feb. 1995, pp. 29-36.

5. Avici Systems Inc., http://www.avici.com.
6. A.A. Chien, “A Cost and Speed Model for k-

ary n-Cube Wormhole Routers,” IEEE Trans.
Parallel and Distributed Systems, vol. 9, no.
2, Feb. 1998, pp. 150-162.

7. W.J. Dally and C. Seitz, “The Torus Routing
Chip,” Distributed Computing, vol. 1, no. 3,
1986, pp. 187-196.

8. J. Duato and P. Lopez, “Performance
Evaluation of Adaptive Routing Algorithms
for k-ary n-Cubes,” Proc. Parallel Computer
Routing and Communication Workshop,
Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1994, pp. 45-59.

9. L.-S. Peh and W.J. Dally, “A Delay Model
and Speculative Architecture for Pipelined
Routers,” to be published in Proc. Seventh
Int’l Symp. High-Performance Computer
Architecture, IEEE CS Press, Los Alamitos,
Calif., 2001.

10. R.F. Sproull and I.E. Sutherland, “Logical
Effort: Designing for Speed on the Back of
an Envelope,” IEEE Advanced Research in
VLSI, C. Sequin, ed., MIT Press, Cambridge,
Mass., 1991, pp. 1-16.

11. W.J. Dally and J.W. Poulton, Digital Systems

Engineering, Cambridge University Press,
Cambridge, U.K., 1998.

12. L.-S. Peh, Flit-Reservation Flow Control, PhD
thesis, Dept. of Computer Science, Stanford
Univ., Stanford, Calif., to be published in 2001.

13. L.-S. Peh and W.J. Dally, “Flit-Reservation
Flow Control,” Proc. Sixth Int’l Symp. High-
Performance Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., 2001, pp. 73-84.

Li-Shiuan Peh is a PhD candidate in com-
puter science at Stanford University. Her
interests are high-speed interconnection net-
works and communication systems. She
received a BS in computer and information
systems from the National University of Sin-
gapore. She is a student member of the IEEE.

William J. Dally is a professor of electrical
engineering and computer science at Stanford
University, where his group developed the
Imagine processor, which introduced the con-
cepts of stream processing, partitioned regis-
ter organizations, and low-power, high-speed
signaling technology. Earlier, he was a profes-
sor at the Massachusetts Institute of Technol-
ogy, where he and his group built the
J-Machine and the M-Machine, experimental
parallel computer systems. As a research assis-
tant and research fellow at Caltech, he
designed the MOSSIM Simulation Engine
and the Torus Routing Chip, which pioneered
wormhole routing and virtual-channel flow
control. Dally received the BS in electrical
engineering from Virginia Polytechnic Insti-
tute, the MS in electrical engineering from
Stanford University, and the PhD in comput-
er science from Caltech. He is a member of the
IEEE, the Computer Society, the Solid-State
Circuits Society, and the ACM.

Send questions and comments about this
article to Li-Shiuan Peh, Stanford University,
Gates Building 2A, Room 212, Stanford, CA
94305; lspeh@cs.stanford.edu.

34

ROUTER DELAY MODEL

IEEE MICRO

