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Abstract. Current router models [2, 3, 5, 6] assume that
clock cycle time depends solely on router latency. How-
ever, in practice, routers are heavily pipelined, making
cycle time largely independent of router latency. In this
paper, we describe a router delay model that accurately
accounts for pipelining based on technology-independent
delay estimates derived through detailed gate-level analy-
sis. Simulations of realistic router pipelines show signifi-
cant performance differences compared with the
commonly-assumed unit-latency model.   Using realistic
pipeline models, we compared wormhole and virtual-chan-
nel flow control.  Our results show that virtual channels
incur a modest additional cycle of per-hop router latency
which is more than offset by the 25-40% throughput
improvement over a wormhole router.

1.  Introduction

Most current literature in interconnection networks
reports comparisons of different flow control and routing
techniques without considering implementation complex-
ity and the impact on router delay, simply assuming unit
router delay. This can lead to inaccurate and skewed com-
parisons. A router delay model which enables designers
and researchers to factor in implementation-specific delay
estimates will thus be invaluable. 

Chien [2, 3] proposed a router model for wormhole and
virtual-channel routers1 to address this need. In his model,
he presented a canonical router architecture as depicted in
Figure 1, which can be applied to all routers, regardless of
the flow control or routing technique governing the router.
The canonical router architecture consists of the following
functions:- address decoding (AD), flow control (FC),
routing header selection (SEL), crossbar arbitration (ARB),
crossbar traversal (CB) and virtual channel controllers
(VC), and the model defines per-hop router latency as the
total delay of the functions on the critical path, i.e. router

latency = TAD + TSEL + TARB + TCB + TVC. Through
detailed gate-level design and analysis, the delay of these
functions are expressed in parameterized equations which
are then grounded in a 0.8 micron CMOS process. By sub-
stituting the parameters of a router into the parametric
equations, a designer can obtain estimates of router latency
easily, and use that as a basis of comparison.

However, a major oversight in Chien’s model is the
omission of pipelining, which is present in most practical
routers. Duato [5] hence proposed an extension of the
model to pipelined routers. His model groups the functions
in the original Chien’s model into 3 pipeline stages :- TR,
the routing stage which encompasses TAD, TSEL and
TARB; TS, the switching stage which includes TFC, TCB
and the delay incurred in latching a flit at the output port;
TC, the channel stage which includes TVC and the inter-
node delay. The clock cycle is then prescribed as the maxi-
mum delay of these 3 stages and per-hop router latency is
thrice the clock cycle time. Both these models are based
upon the premise that clock cycle time depends solely on
router latency though, which is usually not the case in prac-
tical router design. Typically, router designers have to
work within the limits of a clock cycle which is determined
by factors beyond the router, such as the fundamental lim-
its of chip-to-chip signalling [1], or the processor clock
cycle. Hence, setting hard pipeline boundaries and fitting

1. Miller and Najjar extended Chien’s model for virtual cut-through
routers, modifying the parameterized delay equation for TFC to
include the parameter B, the number of buffers in that input queue [6].

Figure 1. Canonical router architecture proposed in
Chien’s model. The parameters of the delay model are P,
the number of ports on the crossbar; F, the number of
output route choices; and V, the number of virtual channels
per physical channel.
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the clock cycle around them will not work. A delay model
has to advocate a good pipeline design for a router, given a
particular clock cycle time.

Besides, these models abstract routers to a single canon-
ical architecture, which result in a micro-architecture
which is not optimal for certain types of routers. For
instance, in the proposed canonical router architecture, pas-
sage through the crossbar is arbitrated on a per-packet basis
and held throughout the duration of a packet, thus prompt-
ing the need for a huge crossbar in a virtual-channel router,
with the number of ports equal to the total number of vir-
tual channels. This contributes unnecessary delay in the
crossbar arbitration and traversal functions. Buffering flits
at virtual channel controllers whose arbitration delay
increases with the number of virtual channels also adds
needless cost to a virtual-channel router. Thus, there is a
need for canonical router architectures which are tailored
optimally for different flow control techniques.

2.  Proposed model

In this paper, we propose a delay model which attempts
to address the issues raised. It comprises a general router
model which outlines a design methodology for the pipe-
lining of a router given a clock cycle time, using the delay
estimates derived by a specific router model to prescribe a
pipeline design.

2.1 Canonical router architectures

First, the model proposes canonical router architectures
which are tailored to each flow control technique. Figure 2
illustrates the canonical wormhole router architecture2,
where head flits enter the input controller at each port, pro-
ceed through routing3, before sending their requests for
desired output ports to the switch arbiter. A state machine
at each input channel (inpc_state) dictates the state in
which each packet is in: routing, switch arbitration or
crossbar traversal. Upon receiving requests from all input
controllers, the global switch arbiter consults the status of
output ports as stored in the state machine for each output
port (outpc_state), resolves conflicts and grants free ports
to requestors. Passage through the crossbar is then held for
the entire duration of the packet, till the tail flit leaves and
releases this hold. As shown in the figure, the parameters
affecting the delay of the various modules of a wormhole

router are p, the number of ports on the crossbar, and w, the
channel width or phit size.

Figure 3 shows the canonical router architecture pro-
posed for virtual-channel flow control. Here, after selecting
an output port through the routing logic, a head flit submits
requests for desired virtual channels to the global virtual
channel allocator, which consults the status of virtual
channels in outvc_state and grants free virtual channels to
requestors.  Flits of a packet that has secured an output vir-
tual channel then arbitrate for passage through the crossbar
switch each cycle. Instead of reserving passage through the
crossbar for the entire duration of a packet, the crossbar is
apportioned to flits of different packets on a cycle-by-cycle
basis. In this router architecture, the function of multiplex-
ing virtual channels onto a physical channel rests upon the
switch allocator, instead of virtual channel controllers. The
additional parameter for virtual-channel flow control is v,
the number of virtual channels per physical channel, which
affects the delay of the virtual channel allocator.

2. This is similar to the canonical router architecture proposed in Chien’s
model.

3. Throughout the paper, our emphasis is on a comparison of flow con-
trol techniques. Hence, we will be viewing routing as a black box, and
assuming decoding and routing takes a typical clock cycle of 20 τ4.

Figure 2. Canonical wormhole router architecture.

Figure 3. Canonical virtual-channel router architecture.
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2.2 Atomic modules and dependencies

The canonical router architectures prescribe the organi-
zation of the different functions of a router. Realization of
these functions in hardware will uncover modules which
are not amenable to pipelining. These modules are termed
“atomic modules” in our model, and are best kept intact
within a single pipeline stage. An example of an atomic
module is the virtual-channel allocator in a virtual-channel
router. If this module straddles multiple pipeline stages, it
can result in grants not being reflected correctly before the
next allocation. Besides, with a separable allocator, there
are lots of wires connecting the input and output ports,
which will require excessive latching should the allocator
be binned in multiple pipeline stages. Figure 4 shows the
various atomic modules of wormhole and virtual channel
routers in our model.

The inputs of these atomic modules may depend on the
outputs of another, in which case, a dependency exists.
These dependencies determine the critical path of a router.
Figure 4(a) and (b) shows the basic dependencies of a
wormhole and virtual-channel router respectively.

Sometimes, these dependencies can be averted with
speculation. For instance, the switch allocator in a virtual-
channel router can speculatively assume that the packet
will manage to obtain a free output virtual channel from the
virtual channel allocator, and thus, proceed to request for
the desired output port before it has secured an output vir-
tual channel. Should the speculation be incorrect,  the
crossbar passage reserved will just be wasted. With specu-
lation, a virtual-channel router removes the dependency
between the virtual channel allocation and switch alloca-
tion phases, and cuts down on its critical path delay, as
shown in Figure 4(c). However, the speculation may result
in lower throughput as the crossbar switch may be allo-
cated to packets which are unable to use it due to unavail-
able virtual channels. While this paper reports comparisons
of just basic wormhole and virtual-channel routers, work is
currently under-going to apply our model to speculative

virtual-channel routers, which can potentially reduce vir-
tual-channel router latency to that of a wormhole router.

2.3 Pipeline design

The delay of each atomic module is then modelled by
the parametric equations derived by the specific router
model (Section 2.4 on page 3) which generates two delay
estimates: latency (ti) and cycle (ci) delay. Latency delay
spans from when inputs are presented to the module, to
when the outputs which are needed by the next module are
stable. Cycle delay refers to the delay expended by addi-
tional circuitry required before the next set of inputs can be
presented to the module. Figure 5 shows these delay com-
ponents. In a switch arbiter, for example, latency spans
from when requests for crossbar ports are presented to
when grant signals are stable, while cycle delay refers to
the delay in the circuits for updating the status of output
ports, so that subsequent arbitrations do not grant output
ports which have already been reserved.

Armed with ti and ci of each atomic phase on the critical
path, the model prescribes the pipelining of the router as
follows :-

(EQ 1)

2.4 Specific router model

The specific router model is responsible for the deriva-
tion of the parameterized delay equations for atomic mod-
ules. We ground our specific delay model on the theory of
logical effort [7, 8] which was proposed by Sutherland,
Sproull and Harris for estimating circuit delay and guiding
the design of circuits with minimum delay.

The theory of logical effort prescribes that circuit delay
along a path is the sum of the delay effort and the parasitic
delay of that path, and delay effort of each stage is the
product of logical effort and electrical effort (EQ 2). Logi-
cal effort refers to the number of times worse the gate is at

Figure 4. Atomic phases and dependences of (a) a
wormhole router; (b) a virtual-channel router; (c) a
speculative virtual-channel router.
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Figure 5. Latency and cycle time estimates derived by the
specific router model.
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delivering output current than would be an inverter with
identical input capacitance, while electrical effort refers to
the ratio of output capacitance to input capacitance, or
fanout.

(EQ 2)

Through detailed gate-level design and analysis of the
circuits of each atomic module4 and the application of
equation 2, technology-independent parameterized delay
equations for each atomic module are derived and listed in
Table 1. Projections of the model are validated against
Synopsys timing analyzer in a 0.18 micron technology and
found to be close.

3.  Insights from model

Figure 6 details the effect of differing numbers of phys-
ical and virtual channels on the per-node latency of a vir-
tual-channel router, with a typical clock cycle of 20 τ4

5.
For a 2-dimensional virtual-channel router with 5 physical
channels, 4 pipeline stages are sufficient for up to 16 vir-
tual channels per physical channel. Thus, overall per-node
latency does not increase as the number of virtual channels
increases from 2 to 16. With a 3-dimensional network, a
virtual-channel router with 7 physical channels will incur
the same per-node latency of 4 cycles (due to its 4 pipeline
stages) for up to 16 virtual channels per physical channel
too.

These model projections indicate that a virtual-channel
router typically requires just one more pipeline stage than a
wormhole router6. Also, with most practical numbers of
virtual channels used to date, the delay of a virtual-channel
router remains unchanged.

4.  Simulation results

Based on the pipelined designs prescribed by the model,
detailed Verilog code for wormhole and virtual channel
routers were crafted and simulations carried out to deter-
mine their latency-throughput characteristics. A typical

TABLE 1. Parameterized delay equations (in τ) for
wormhole and virtual-channel routers.

p=5; w=32; v=2; 
clk=20τ4

Module Parameterized delay equations (in τ)

Model 
(τ4)

Synopsys 
Timing 

Analyzer 
(τ4)

Wormhole router

Switch 
arbiter 
(swarb)

9.6 9.9

Crossbar 
traversal 

(xbar)
8.4 10.5

Virtual-channel router
Virtual-
channel 
allocator 
(vcalloc)

16.9 15.3

Switch 
allocator 
(swalloc)

11.8 11.9

Crossbar 
traversal 

(xbar)
8.4 10.5

4. Due to space constraint, detailed gate-level designs of the routers can-
not be presented. In brief, separable allocators are used, and the arbiter
adopted is the matrix arbiter.
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Figure 6. Effect of p, the number of physical channels
(pcs) and v, the number of virtual channels (vcs) on per-
node latency of virtual-channel routers. A typical clock cycle
of 20 τ4 was assumed. Each bar illustrates the router
pipeline, with the shaded regions corresponding to the
fraction of clock cycle time used by each atomic module.

5. τ4 refers to the delay of an inverter driving 4 other inverters [4].
6. If the virtual-channel router is speculative, the per-hop latency can

potentially be the same as that of the wormhole router.
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clock cycle of 20 τ4 was assumed. The simulator generates
uniformly distributed traffic across a 8-by-8 mesh network
to random destinations. Each simulation is run for a warm-
up phase of 10,000 cycles. Thereafter, 100,000 packets are
injected and the simulation is run till these packets in the
sample space have all been received. A constant rate
source injects 5-flit packets at a percentage of the capacity
of the network and the average latency of the packets is
calculated. Latency spans the instant when the first flit of
the packet is created, to the time when its last flit is ejected
at the destination node, including source queuing time and
assuming immediate ejection. Each router uses credit-
based flow control to regulate the use of buffers, and prop-
agation delay across the channel is assumed to take a single
cycle. Since the purpose of our simulations is to explore
the performance of flow control strategies, we chose sim-
ple dimension-ordered routing.

4.1 Performance of wormhole vs. virtual-channel 
routers

Figure 7 shows the latency-throughput curves of a
wormhole router and a virtual-channel router with 8 buff-
ers per input port. The base latency of the wormhole router
(29 cycles) is lower than that of the basic virtual-channel
router (36 cycles), since the wormhole router uses a 3-stage
pipeline while the virtual-channel router is pipelined over 4
stages at each hop. However, virtual-channel flow control
with 2 virtual channels extends the throughput achieved by
wormhole flow control by 25% from 40% capacity to 50%
capacity.

With 16 buffers per input port, similar effects were
observed, as shown in Figure 8. Again, a basic virtual-
channel router has a higher base latency (35 cycles) as
compared to that of a wormhole router, due to the addi-

tional pipeline stage per hop. However, the advancement in
throughput is large, as a virtual-channel router with 2 vir-
tual channels enjoys a throughput of 65% capacity, a 30%
improvement over that achieved by the wormhole router
(50% capacity). With 4 virtual channels, throughput is fur-
ther extended to 70% capacity, a 40% improvement over
wormhole flow control.

4.2 Effect of assuming single-cycle router latency 
vs. multiple-cycle pipelined design

Most published research compares the performance of
different router designs assuming a single-cycle router
latency, without taking into account implementation com-
plexity and cost. To quantify this effect, we ran simulations
with a cycle-accurate C simulator which assumes single-

Figure 7. Latency-throughput curves of wormhole and
virtual-channel routers with 8 buffers per input port. The
routers adhere to the proposed pipelined router model.
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Figure 8. Latency-throughput curves of wormhole and
virtual-channel routers with 16 buffers per input port. The
routers are pipelined as prescribed by the proposed
pipelined router model.

Figure 9. Performance of wormhole and virtual channel
routers, as modelled by the proposed pipelined delay
model, and as modelled assuming a single-cycle router
delay. (8 buffers per input port)
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cycle router latency for both wormhole and virtual-channel
flow control. All other experimental parameters are identi-
cal to that of the Verilog simulator.

As shown in Figure 9, assuming single-cycle router
latency results in both wormhole and virtual-channel rout-
ers incurring the same low base latency of 16 cycles,
whereas simulations which adhere to our proposed multi-
ple-cycle pipeline design highlight the higher base latency
incurred by virtual-channel flow control due to its longer
pipeline.

It is also apparent that assuming that a single-cycle
router latency results in inflated throughput figures. This is
because throughput in wormhole and virtual-channel flow
control is strongly influenced by buffer utilization, which
depends on how quickly credits can be sent and received,
prompting the re-use of buffers. In the simulations assum-
ing a single-cycle routing latency, a credit can be sent and
received in 2 cycles, while in our pipelined model, a worm-
hole router needs 4 cycles to turnaround credits, and a vir-
tual-channel router needs 5 cycles. Thus, throughput is
lower in the pipelined model than in one which ignores
implementation delay.

5.  Conclusions

We have presented a router delay model which accu-
rately accounts for pipelining and models routers with
canonical micro-architectures which are tailored to its flow
control technique. Verilog simulations based on the model
show modest additional router latency with virtual-channel
flow control which is more than offset by its improvements
in throughput over wormhole flow control. Work is cur-
rently on-going to investigate speculative virtual-channel
flow control, whch can potentially reduce the router
latency experienced by a virtual-channel router to that of a
wormhole router.

Also, when compared with simulations ignoring pipe-
line delay and assuming unit router latency, significant dis-
crepancies in base latency and throughput were observed,
supporting the importance of considering implementation
costs when simulating router performance.
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