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Abstract

This paper presents flit-reservation flow control, in which
control flits traverse the network in advance of data flits,
reserving buffers and channel bandwidth. Flit-reservation
flow control requires control flits to precede data flits,
which can be realized through fast on-chip control wires or
the pipelining of control flits one or more cycles ahead of
data flits. Scheduling ahead of data arrival enables buffers
to be held only during actual buffer usage, unlike existing
flow control methods. It also eliminates data latency due to
routing and arbitration decisions. Simulations with fast
control wires show that flit-reservation flow control
extends the 63% throughput attained by virtual-channel
flow control with 8 flit buffers per input to 77%, an
improvement of 20% with equal storage and bandwidth
overheads. Its throughput with 6 buffers (77%) approaches
that of virtual-channel flow control using 16 buffers (80%),
reflecting the significant buffer savings as a result of effi-
cient buffer utilization. Data latency is also reduced by
15.6% as compared to virtual-channel flow control. The
improvement in throughput is similarly realized by the
pipelining of each control flit a cycle ahead of their data
flits, using control and data networks with the same propa-
gation delay of 1 cycle.

1.  Introduction

Communication is the limiting factor in many computer
systems, network switches and routers, and other digital
systems. Buses, which have long been used for communi-
cation in such systems, are unable to keep up with their
rapidly growing demand for high communication perfor-
mance. Interconnection networks, historically used in high-
end parallel computers, have begun to fill this performance
gap, replacing buses in all types of computer systems and
in high-end network switches. At the same time, chips have
grown in complexity to the point that interconnection net-
works are beginning to be used for on-chip communication
in addition to system-level communication.

Given a particular topology and routing strategy, the
efficiency of an interconnection network is largely deter-
mined by its flow-control: the method used to allocate
resources (buffer space and channel bandwidth) to the
flits1 of packets traversing the network. The shape of the
characteristic latency-throughput curve of a network is
determined by flow control. A good flow control strategy
enables a network to operate at 80% or more of bisection
bandwidth with low latency. A poor flow-control strategy,
on the other hand, results in a network that saturates at less
than 30% of capacity.

This paper introduces flit-reservation flow control in
which control flits traverse the network ahead of data flits
reserving buffers and channel bandwidth. When the data
flits arrive, they are forwarded or buffered according to the
reservation. This advance scheduling makes very efficient
use of buffers, allowing them to be reused immediately fol-
lowing the departure of a flit. In contrast, the on-the-fly
scheduling of existing flow-control methods idles each
buffer for a considerable period after each flit departure.

Reserving network resources ahead of the arrival of data
flits yields two performance improvements. First, data
latency is reduced (by 15.6% for our example on-chip net-
work) because routing and arbitration are performed in
advance of data arrival. Second, for a fixed amount of
buffer space, saturation throughput is increased because of
the more efficient buffer scheduling. For an 8x8 mesh net-
work with eight flit buffers per input, virtual-channel flow
control [Dally92] saturates at 63% of bisection bandwidth
while flit-reservation flow control extends performance to
77% of available bandwidth, a 20% improvement with
equal storage and bandwidth overheads.

Our investigation of flit-reservation flow control is
motivated by the design of an on-chip network suitable for
use with emerging VLSI technology [DalLac99]. As VLSI
technology scales, on-chip wires become slower - giving a
wire delay of four clocks per hop in our example network.
However, wires on a thick upper metal layer can have a
fraction of this delay2. Flit-reservation flow control

1. A flow control digit or flit is the smallest unit of flow control.



exploits these fast wires by using them to send relatively
small control flits ahead of the wide data flits to make res-
ervations.  

Flit-reservation flow control can also be applied to off-
chip networks, where there are no fast control wires, by
transmitting the control flits of a packet one or more cycles
in advance of the data flits. This can be done without delay
in many contexts. In a multiprocessor, for example, the
control flits for a read reply packet can be sent while the
DRAM is being accessed for the data flits. If the destina-
tion is not available in advance, the data flits can simply be
delayed by a few cycles. This delay is largely recouped by
the savings in routing and arbitration latency.

Current flow-control methods are reviewed and com-
pared to flit-reservation flow control in Section 2. Section
3 delves into the details of flit-reservation flow control,
explaining how reservations are made and buffers are allo-
cated. Experimental results comparing flit-reservation flow
control with virtual-channel flow control are presented in
Section 4. Section 5 discusses several design and imple-
mentation issues pertaining to flit-reservation flow control
and concluding remarks round up the paper in Section 6.

2.  Related Work

With store-and-forward flow control3, each node waits
until an entire packet has been received before forwarding
any of the packet to the next node.  With this approach, a
flit is an entire packet. Both channel bandwidth and buffer
space are allocated in packet-sized units. With virtual-cut-
through flow control [KerKle79], transmission of the
packet may begin before the entire packet is received.
However, bandwidth and storage are still allocated in
packet-sized units. Store-and-forward flow control has
long been used by computer networks [Tanenb96] and was
adopted by early parallel computers such as the Caltech
Cosmic Cube [Seitz85]. 

 Wormhole flow control4 [DalSei86] improves upon
store-and-forward flow control by allocating storage and
bandwidth to flits that are smaller than a packet. This
allows relatively small flit-buffers to be used in each
router, even for large packet sizes. This enabled fast single-
chip routers to be built in 1986 technology. For a fixed
amount of storage, this also results in lower latency and
greater throughput because some flits of a packet are
accepted before an entire packet buffer is available. 

Wormhole flow control makes inefficient use of chan-
nel bandwidth however. While it allocates storage and

bandwidth in flit-sized units, wormhole flow control holds
a physical channel for the duration of a packet. As a result,
when a packet is blocked, all of the physical channels held
by that packet are left idle. Other packets queued behind
the blocked packet are unable to use the idle physical chan-
nel. Hence throughput suffers. 

Virtual-channel flow control [Dally92] allows blocked
packets to be passed by other packets. This is accom-
plished by associating several virtual channels, each with a
separate flit queue, with each physical channel. Virtual
channels arbitrate for physical channel bandwidth on a flit-
by-flit basis. When a packet holding a virtual channel gets
blocked, other packets can still traverse the physical chan-
nel through other virtual channels. 

Both wormhole and virtual-channel flow control leave
buffers idle between flits, reducing throughput and increas-
ing buffer requirements. Figure 1 shows a timeline of the
buffer allocation process used by wormhole and virtual-
channel flow control. A buffer is held from the time the
data flit departs the current node, to the time the flow con-
trol signal returns to inform the current node that the buffer
has been released. Only then is the buffer allocated to the
next flit. Hence, the turnaround time of a buffer, the idle
time between flits, is at least the sum of the propagation
delay of a data flit to the next node and the flow control
delay back. For flit-reservation flow control, the turn-
around time can be zero.

Wave switching [DLSY96] is a hybrid of circuit switch-
ing and wormhole flow control, where probes traverse a
separate control network, setting up circuits on the data
network for subsequent messages. Since the physical data
channels are only used by a single message, there is no
need for any buffering or flow control for the data flits. As
a result, latency and throughput of the data network is
enhanced. Like flit-reservation flow control, wave switch-

2. Doubling the width, spacing and thickness of wires doubles their
velocity, halving both latency and bandwidth.

3. Sometimes called store-and-forward switching.
4. Sometimes called wormhole routing.

Figure 1. Timeline illustrating the buffer turnaround time of
wormhole and virtual-channel flow control. Buffers are held
unnecessarily throughout the propagation and flow control
delays.
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ing uses a separate control network to reduce latency and
extend throughput. While flit-reservation flow control
achieves this through advance scheduling, wave switching
attains it through removing the encumbrances of flow con-
trol mechanisms from the data network and thus trimming
the clock cycle. Being governed by circuit switching, how-
ever, results in such gains only realizable if the circuit
setup time can be amortized over many message deliveries.

Another technique which can similarly extend the
latency-throughput envelope is statically-scheduled flow
control, such as that used by the MIT Raw Machine
[BLAA99], where a compiler schedules the allocation of
buffers and channel bandwidth in advance of program exe-
cution.  This has the advantage of eliminating the routing
and arbitration latency and cutting the minimum buffer
turnaround time to zero. However, it sacrifices flexibility
for this performance. Such an approach cannot support
applications with data-dependent communication. This
prompted the Raw Machine to also include a separate
dynamically-routed network as a fall-back mechanism for
applications with dynamic communication patterns. A stat-
ically-scheduled network also precludes the use of run-
time data migration to improve performance and load bal-
ance on an architecture.

Flit-reservation flow control offers many of the advan-
tages of statically-scheduled flow control, while supporting
the flexibility of a dynamically routed network. Like the
statically-scheduled network, a network using flit-reserva-
tion flow control schedules the buffers and channels of the
network in advance of the data packet arrival. However,
instead of scheduling these resources at compile time, the
scheduling decisions are deferred until data packet injec-

tion, allowing the schedule to adapt to data-dependent des-
tinations, routes, and packet sizes. With both approaches
buffers are used efficiently, with immediate turnaround;
and routing and arbitration latency is hidden. With flit-res-
ervation flow control, however, this performance is
achieved without sacrificing flexibility.

3.  Flit-Reservation Flow Control

Traditionally, a packet consists of a head flit which con-
tains the packet destination and leads subsequent body flits
through the network. In a network using flit-reservation
flow control, the responsibility of leading data flits falls on
the shoulders of control flits. Control flits traverse a sepa-
rate control network in advance of the data flits and sched-
ule the data network buffer and channel resources for each
data flit. When the data flits arrive, they are buffered and
forwarded according to this pre-arranged schedule.

As shown in Figure 2, a packet consists of one or more
control flits and zero or more data flits. The control head
flit contains the packet destination and identifies the first
data flit (if any) by specifying its arrival time. Each subse-
quent control flit specifies the arrival times of up to N addi-
tional data flits, where N is the maximum number of data
flits led by a control flit. The data flits themselves contain
only payload information. They are identified solely by
their time of arrival.

A block diagram of a flit-reservation router is shown in
Figure 3. For clarity, the figure shows just one input chan-
nel and one output channel. The upper part of the figure
depicts the control network, while the lower part of the fig-
ure shows the data network. 

When a control flit arrives at a router it proceeds
through the steps of routing, output scheduling, and input

Figure 2. The control head flit contains the packet
destination and is responsible for leading the first data flit.  It
identifies the first data flit by its arrival time (td0).
Subsequent control body flits contain the arrival times of up
to N data flits (In this figure, a control flit leads up to 4 data
flits, thus N=4). All control flits contain a virtual channel
identifier (VCID) which ties control flits of the same packet
together.
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Figure 3. Block diagram of a router governed by flit-
reservation flow control.
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scheduling. First, the routing logic block uses the destina-
tion field of the control head flit to determine the output
port to which this packet should be forwarded. This output
port selection is stored in a table indexed by virtual channel
identifier (VCID). Subsequent control body flits look up
their output port in this table using their VCIDs. In parallel
with determining the output port selector, the arrival times
of each data flit associated with a control flit are recorded
in the input reservation table. After completing the routing
step, the control flit, annotated with the input port number
is forwarded to the output scheduler for the selected output
port.

The output scheduler schedules the departures of each
data flit associated with the control flit. Its goal is to sched-
ule the data flits to leave as soon as possible for the next
hop. This scheduling is done using the output reservation
table as shown in Figure 4(a). The output reservation table
records the status of each output channel (busy or not) and
the number of free flit buffers at the far end of the channel.
This status is kept for each clock cycle within a window of
time from the present to a scheduling horizon (currently 32
cycles in the future), with circular reuse as time expires.

For a data flit arriving at time ta, the output scheduler
determines the earliest departure time, td > ta, when the
channel is not busy and there is at least one buffer available
at the far end of the line to hold the data flit when it arrives
at td + propagation delay, tp. Hence, for all t >= td + tp, a
buffer must be available on the next hop.  The scheduler
then reserves these resources by marking the channel busy
during cycle td and decrementing the buffer count for all t
>= td + tp.

A scheduling example is shown in Figure 45. The state
of the output reservation table before the flit is scheduled is
shown in Figure 4(a). Here a data flit is scheduled to arrive
at ta = 9 (ten cycles in the future). The output channel is
busy during cycle 10 and there are no buffers available dur-
ing cycle 116. Thus, the first available departure time is td
= 12. Once this assignment is made, the output reservation
table is updated as shown by the shaded areas in
Figure 4(b). The channel is marked busy during cycle 12
and the buffer count is decremented from cycle 12 to the
scheduling horizon.

For each successfully scheduled data flit, its corre-
sponding arrival time field in the control flit is updated
with the scheduled arrival time (td + tp). At the same time,
reservation signals containing ta and td are sent back to the
input scheduler associated with the originating input port to
orchestrate movements of the data flit. When output sched-
uling is completed for all associated data flits, the control
flit is forwarded over the control output link to the next
node.

While the output scheduler reserves the departure times
of data flits, the input scheduler orchestrates the movement
of a data flit through the router at the scheduled time.
When the input scheduler receives reservation signals from
the output scheduler, it updates the input reservation table
to reflect the flit departure and sends a credit back to the
previous node to update the buffer availability in that
node's output reservation table. The input reservation table,
shown in Figure 4(c), contains a "Buffer In" row specify-

Figure 4. (a) The output reservation table before a control
flit schedules a data flit arriving from the West channel at
cycle 9 and leaving via the East channel. Since the channel
is occupied at cycle 10, the next slot, cycle 11, is checked.
The channel is free at cycle 11, but there aren't any free
buffers left on the next node. Thus, cycle 11 is also invalid.
The data flit is finally scheduled to leave at cycle 12.   (b)
Here, the output reservation table has been updated to
reflect the departure of the data flit at cycle 12. The channel
is marked busy; and the number of free buffers on the next
node is decremented from cycle 12 onwards. (c) In the
input reservation table, buffer 5 is allocated for the data flit
when it arrives at cycle 9 and linked to the East output
channel at cycle 12. Buffer 5 is also marked as occupied
after it is allocated. The shaded regions reflect the updates.
(d) Timeline showing the scheduled movements of the data
flit.
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5. For simplicity, the buffer state at td is shown to be the buffer state at td
+ tp throughout this example.

6. Even if the channel were not busy during cycle 10, the flit could not
be scheduled that cycle due to the shortage of buffers at cycle 11.



ing the buffer (if any) to which the input port should write
each cycle. The table also has a "Buffer Out" row and a
“Output Channel” row which indicates which buffer
should be connected to which output port on a particular
cycle7.

When a reservation signal arrives at the input schedul-
ing block, the input scheduler updates the table to reflect
the flit’s departure, by filling the “Departure Time” and
“Output Channel” fields. Although this data flit is guaran-
teed to have a free buffer awaiting its arrival, a specific
buffer is not allocated until one cycle before its arrival8.
Thus at input scheduling time, “Buffer In” and “Buffer
Out” fields are filled with a placeholder symbol that
encodes the departure time. This is replaced by the actual
buffer number just before the arrival of the data flit. At this
point, the buffer occupancy bits are consulted, a free buffer
is allocated, and the “Buffer In” and “Buffer Out” fields
are updated with this buffer number. The buffer logic also
detects the situation when a flit is scheduled to depart once
it arrives and bypasses the flit directly to the output port.

Continuing our example, upon receiving reservation
signals ta=9 and td=12, the input scheduler updates the
departure time of the flit and links the flit to the East output
channel at time 12. These assignments are shown lightly
shaded in Figure 4(c). The input scheduler also sends a
credit back to the previous node, causing it to increment its
free buffer count from cycle 12 onwards. One cycle before
the arrival of the data flit in cycle 9, indicated by the “Flit
Arriving?” field, buffer 5 is allocated and the “Buffer In”
and “Buffer Out” entries are updated, shown in a darker
shade in Figure 4(c). Buffer 5 is also marked as occupied in
the buffer occupancy bits.

After a data flit has been scheduled, all its movements
are tracked in the input reservation table. Each cycle, the
table directs which buffer is to be written with data from
the input link, and which buffers are to be driven onto
which output links. There are no decisions to be made as
all of the work has been done ahead of time by the control
flits.

When the data flit scheduled in our example above
arrives on the data input on cycle 9, the input reservation
table directs it to be written to buffer 5. Then, during the
cycle before its scheduled departure time (cycle 11),  the
table directs the flit to be read from buffer 5 and driven
onto the east output.  The data flit thus leaves for the next
node at cycle 12, and arrives there during cycle 15. The

contents of the data flit are never examined. It is stored and
forwarded according to the pre-arranged schedule in the
input reservation table. If a data flit arrives at a node before
its control flit has completed its schedule, it is directed to a
free buffer in the buffer pool and kept track of through a
logical schedule list.

Control flits schedule the injection of data flits into the
network in exactly the same manner described above, with
control flits being injected only after they have scheduled
the injection times of their data flits. Similarly, control flits
schedule the re-assembly of data flits into packets at the
destination, since data flits are potentially out of order. The
data flits are assigned to sequential re-assembly buffers and
the input reservation table schedules the transfer of each
data flit from the input link into a re-assembly buffer.

In the absence of contention, a data flit can easily depart
the router the cycle after it arrives. This is because all of
the decision logic: the routing and arbitration, has been
performed in advance by the control flit.  This pre-arranged
control is responsible for the low data latency of flit-reser-
vation flow control.

Unlike existing flow control methods which hold a
buffer from the time the data flit departs from the current
node (td), flit-reservation flow control marks a buffer as
occupied only from the time the data flit arrives at the next
node (td + tp). As control flits race ahead in flit-reservation
flow control, credits are returned in advance and buffers
freed in time for other control flits to reserve and use them
immediately. This fast recycling of flit buffers accounts for
the high throughput and significant buffer savings of flit-
reservation flow control.  

4.  Experimental Results

We simulated flit-reservation and virtual-channel flow
control on a flit-level simulator modeling an on-chip 2-
dimensional 8-by-8 mesh interconnect. Control and credit
signals are routed on wires that are 4 times faster than the
data wires9. Thus, traversing the control and credit links
between nodes takes 1 cycle, while traversing the data link
takes 4 cycles. Routing and scheduling latency is 1 cycle.
The simulated network uses random arbitration and deter-
ministic dimension-ordered routing.

The simulator generates uniformly distributed traffic
across the network to random destinations. Each simula-
tion is run for a warm-up phase of a minimum of 10,000
cycles till average queue lengths have stabilized. Thereaf-
ter, 100,000 packets are injected and the simulation is run7. A higher performance router can be realized by using a multi-ported

input buffer addressed by multiple “Buffer Out” rows in the input res-
ervation table.  This enables a single input buffer to simultaneously
forward data flits to multiple outputs.

8. This circumvents the buffer interchange problem which is discussed
in Section 5.

9. The wires of the control network are 4 times thicker than that on the
data network. The control network hence has 1/4 of the bandwidth and
latency.



till these packets in the sample space have all been
received. 5-flit packets are used unless otherwise men-
tioned. A constant rate source injects packets at a percent-
age of the capacity of the network and the average latency
of the packets is calculated. Latency spans the instant when
the first flit of the packet is created, to the time when its
last flit is ejected at the destination node, including source
queuing time and assuming immediate ejection. This
includes the latency incurred by the control flits, as control
and data flits are created at the same time, and data flits
cannot be ejected till their control flits have scheduled their
ejection at the destination node. Across all experiments, we
calculated the 95% confidence interval of the average
latency measurements and found them to be within 1%
error.

To achieve a fair comparison of virtual-channel and flit-
reservation flow control, we did a detailed breakdown of
the storage and bandwidth overheads incurred by both flow
control methods. Experimental configurations where both
flow control methods incur approximately the same storage
overhead are selected. The extra bandwidth needed by flit-
reservation flow control is also accounted for.

The storage overhead of virtual-channel flow control
and flit-reservation flow control is shown in Table 1.  With
virtual-channel flow control, overhead is required to store
buffer queue pointers, channel status bits, and next-hop
buffer counts. Each data flit is also padded with a virtual
channel identifier and a type field distinguishing head,
body and tail flits. Flit-reservation flow control, on the
other hand, incurs overhead to store the control buffers,
their queue pointers, and the input and output reservation
tables. The data buffers of flit-reservation flow control

contain only payload, as type bits and virtual-channel iden-
tifiers are tags on control flits instead. In addition, a control
flit  contains the arrival times of each data flit it leads. The
output reservation table is essentially the equivalent of vir-
tual-channel flow control’s channel status bits and buffer
counts, archived over the scheduling horizon, while the
input reservation table has fields as illustrated in Figure
4(c), together with the buffer occupancy bits.

 Table 1 shows that virtual-channel flow control with 8,
16 and 32 buffers (VC8, VC16, VC32) with 4 buffers in
each virtual channel10 incurs an overhead of 0.17, 0.44,
1.09 flits per input channel. Flit-reservation flow control
configurations which incur approximately the same storage

TABLE 1. Storage overhead of virtual-channel and flit-reservation flow control. Data flits are f bits wide (f=256 in our
example network). In virtual-channel flow control, data flits are padded with the virtual channel identifier and a t-bit wide
type field (t=2); In flit-reservation flow control, control flits contain the virtual channel identifier, type field and arrival time
stamps for up to d data flits they lead (d=1). bd refers to the number of data buffers, bc refers to the number of control
buffers, vd is the number of virtual channels on the data network and vc is the number of virtual channels on the control
network. The reservation tables in flit-reservation flow control have 32 slots, as the scheduling horizon, s, is 32 cycles.

Virtual-Channel Flow Control Flit-Reservation Flow Control

VC8 VC16 VC32 FR6 FR13

General
bd=8
vd=2

bd=16
vd=4

bd=32
vd=8

General bd=6
vc=2
bc=6

bd=13
vc=4
bc=12

Data buffers (f + log2vd + t) x bd x 5 10360 20800 41760 f x bd x 5 7680 16640

Control buffers - - - - (log2vc + t + (d x log2s)) x bc x 5 240 540
Queue pointers 2 x log2bd x vd x 5 60 160 400 2 x log2bc x vc x 5 60 160

Output reservation table
(Status bits and buffer counts)

(1+ log2bd) x 4 x vd 32 80 192 (1 + log2bd) x s x 4 512 640

Input reservation table - - - - [(1 + log2s + 2 + 2 x log2bd) x s + bc] x 5 2270 1980

Bits per node 10452 21040 42352 10762 19960
Flits per input channel 8.17 16.44 33.09 8.40 15.59

TABLE 2. Bandwidth overhead incurred by virtual-
channel and flit-reservation flow control for each
data flit. The packet length is L flits, and the destination
field occupies n bits. Other parameters are defined in
Table 1.

Virtual-Channel 
Flow Control

Flit-Reservation Flow 
Control

General General
Destination n/L n/L
VCID log2vd log2vc/L [1 + (L-1)/d)]

Arrival times - log2s

Overhead per data 
flit (bits)

n/L + log2vd n/L + 
log2vc/L[1 + (L-1)/d)] + 

log2s

10. Different sizes of virtual channel queues were simulated for each
physical channel buffer size. This configuration was found to realize
the best performance for virtual-channel flow control.



overhead as VC8 and VC16 provide 6 data buffers (FR6)
and 13 data buffers (FR13) respectively. In both FR6 and
FR13, a control flit leads a single data flit, 2 control flits
are injected every cycle and each control virtual channel
has 3 buffers. Both configurations have a scheduling hori-
zon of 32 cycles. To compensate for the additional storage
which flit-reservation flow control incurs, FR6 has 2 fewer
data buffers than VC8, while FR13 has 3 fewer data buff-
ers than VC16.

The bandwidth demands of both virtual-channel and
flit-reservation flow control are presented in Table 2. Since
FR6 and FR13 use the same number of virtual channels as
VC8 and VC16 respectively (i.e. vc=vd), and 1 control flit
leads a single data flit in FR6 and FR13 (d=1), the extra
bandwidth overhead incurred by flit-reservation flow con-
trol lies in the arrival time field in each control flit. Hence,
flit-reservation flow control incurs 5 more bits of band-
width overhead for a scheduling horizon of 32 cycles,
which is 2% for 256-bit data flits.

4.1 Comparison with Virtual-Channel Flow 
Control

Figure 5 graphs the average latency as a function of
offered traffic realized by virtual-channel and flit-reserva-
tion flow control. With the same amount of storage, flit-
reservation flow control saturates at a higher throughput
than virtual-channel flow control. The graphs also reflect a
lower base latency for flit-reservation flow control due to
the elimination of data  routing and arbitration delays.

With 8 buffers per input channel, virtual-channel flow
control saturates at 63% capacity. FR6 extends the
throughput by 22% to 77% capacity. Biased by the 2%
additional bandwidth which FR6 consumes, FR6 improves
over VC8 by 20%, taking into account storage and band-
width overheads. When using 16 buffers per input channel,
virtual-channel flow control attains a throughput of 80% of

bisection bandwidth, while flit-reservation flow control
pushes it further to 85% capacity.

Flit-reservation flow control's efficient use of buffers is
reflected in the significantly fewer buffers needed to
achieve a certain level of throughput. Flit-reservation flow
control with 6 buffers per input channel saturates at a
throughput (77% capacity) higher than virtual-channel
flow control using 8 buffers per input channel (63% capac-
ity), and close to the throughput obtained by virtual-chan-
nel flow control using 16 buffers per input channel (80%
capacity). Similarly, flit-reservation flow control using 13
buffers per input channel approaches the saturation
throughput (85% capacity) of virtual-channel flow control
using 32 buffers per input channel.

Besides pushing throughput due to immediate buffer
turnaround, flit-reservation flow control also eliminates
routing and arbitration latency since these decisions are
made by control flits in advance11. The experiments
showed that flit-reservation flow control has a base latency
of 27 cycles as compared to virtual-channel flow control's
32 cycles, a savings of 15.6%.

4.2 Effect of Packet Length

Figure 6 shows the latency-throughput curves for vir-
tual-channel flow control and flit-reservation flow control,
with 21-flit packets. The base latency is lowered by 9
cycles from virtual-channel flow control's base latency of
55 cycles, a savings of 16.4%. Throughput is also
improved beyond the saturation throughput of virtual-
channel flow control.

When using 13 buffers per input channel, flit-reserva-
tion flow control improves throughput by 13.4% (after tak-
ing into account the 2% bandwidth overhead incurred by

Figure 5. Latency versus offered traffic for virtual-channel (VC) and flit-reservation (FR) flow control with 5-flit packets.
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11. Both wormhole and virtual-channel flow control can be extended to
use a fast control network to hide routing and arbitration latency. Sat-
uration throughput, however, will remain unchanged.



flit-reservation flow control) to 75% capacity, beyond the
saturation throughput of virtual-channel flow control (65%
capacity) using 32 buffers, reflecting the significant buffer
savings enjoyed by flit-reservation flow control.

However, with 6 buffers per input channel, flit-reserva-
tion flow control only pushes the throughput envelope
slightly from virtual-channel flow control's throughput at
55% capacity to 60% capacity, an improvement of 7%
after considering bandwidth overhead. Thus, the effective-
ness of flit-reservation flow control is tempered when the
buffer pool is small relative to the length of packets. This is
because when a packet is blocked, all its data flits are
stalled and hold buffers. The longer a packet, the more con-
gestion in the buffer pool. Hence, when the buffer pool size
is small relative to the packet length, active packets are
often unable to pass blocked packets.

We tracked a specific buffer pool of a router in the mid-
dle of the mesh interconnect using flit-reservation flow
control with 6 buffers in each buffer pool, and noted that
near saturation, the buffer pool is full 40% of the time, as

compared to virtual-channel flow control which saturates
when the buffer pool is only full <5% of the time. Thus,
although flit-reservation flow control uses the buffer pool
more effectively, it is unable to turnaround buffers when
many of them are actually held due to blocking.

4.3 Effect of Scheduling Horizon

The scheduling horizon determines how far ahead a
control flit can make reservations for its data flits. Hence, a
scheduling horizon of 32 cycles implies that at time t, the
latest departure time that a control flit can reserve for its
data flits is 32 cycles in the future, i.e. time t+32. Figure 7
contains the latency-throughput curves of flit-reservation
flow control (experimental configuration FR6) with the
scheduling horizon adjusted from 16 cycles to 128 cycles.

The figure shows that throughput is relatively insensi-
tive to scheduling horizon. With a horizon of 16 cycles,
throughput is within 10% of optimum and there is little
improvement in increasing the horizon beyond 32 cycles.

Figure 6. Latency versus offered traffic for virtual-channel (VC) and flit-reservation (FR) flow control with 21-flit packets.
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Figure 7. Latency versus offered traffic for flit-reservation
flow control with scheduling horizon adjusted from 16
cycles to 128 cycles.
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Figure 8. Latency-throughput curve for flit-reservation flow
control with control flits leading data flits by 1, 2, and 4
cycles. The control and data networks have the same
propagation delay of 1 cycle.
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A longer scheduling horizon increases the probability that
a control flit will be able to schedule all of its data flits and
depart before the arrival of the data flit. However, a longer
scheduling horizon can only be exploited if control flits
lead data flits significantly. The optimum scheduling hori-
zon thus depend on the relative capacities of the control
and data networks. 

4.4 Fast control versus Leading control

Flit-reservation flow control requires that control flits
precede data flits. This can be accomplished either with
fast control wires or by injecting control flits one or more
cycles ahead of data flits on a control network with the
same propagation delay as the data network.

To explore the performance of flit-reservation flow con-
trol with leading control, we modified our simulation to
inject control flits N cycles ahead of their associated data
flits, with control, data and credit signals traversing wires
with the same propagation delay of 1 cycle between nodes.
Virtual-channel flow control is also simulated on this net-
work where data and credit propagation delay between
nodes is 1 cycle. The latency measurements of flit-reserva-
tion flow control include the N cycles in which data flits
are deferred behind the control flits.

Figure 8 shows the latency-throughput curves of  flit-
reservation flow control with each control flit injected 1, 2
and 4 cycles ahead of its associated data flits, using the
FR6 configuration with 6 data buffers per input. The exper-
iments show that the throughput achieved by flit-reserva-
tion flow control is independent of lead time. This is
because with a small buffer pool, data flits are frequently
stalled due to high contention on the data network. The
control flits, on the other hand, traverse the control network
with little contention12 and hence arrive at each hop well
ahead of their corresponding data flits. Reservations can
thus be scheduled in advance, and buffers reused effi-

ciently to extend throughput. We tracked the average num-
ber of cycles between the arrival of a control flit at the
destination and the arrival of its first associated data flit,
and found that for flit-reservation flow control with a 1-
cycle lead time, control flits arrive 14 cycles in advance of
data flits when the offered traffic is 77% capacity. This is
comparable to the lead of 15 cycles that control flits with a
4-cycle lead time attain at 77% capacity.

The data also shows that delaying the data flits for up to
4 cycles has little effect on overall latency. This delay is
more than made up by the elimination of routing and arbi-
tration delay. On the other hand, when control flits are only
injected one cycle ahead of data flits, data flits frequently
catch up with their control flit and advance scheduling can-
not be carried out.

Figure 9 compares flit-reservation flow control with a
1-cycle leading control to virtual-channel flow control on
5-flit packets. The performance improvement is the same
as for flit-reservation flow control with a fast control net-
work. While there is no reduction in base latency, flit-res-
ervation flow control reduces latency under moderate to
high loads. At 50% capacity, for example, FR6 has a
latency of 19 cycles while VC8 and VC16 experienced an
average latency of 21 cycles. This savings in average
latency is as a result of control flits forging further ahead of
data flits when data flits are stalled in a congested data net-
work. Control flit can thus schedule data flits ahead of
time, and eliminate routing and arbitration latency.

The base latency experienced by flit-reservation flow
control (15 cycles) is the same as that obtained by virtual-
channel flow control, as the 1-cycle lag which the data flits

Figure 9. Latency-throughput curve for flit-reservation flow control with leading control instead of fast control. Control flits are
injected a cycle before their data flits, on a control network with the same propagation delay of 1 cycle as the data network.
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12. In our experimental configurations, each control flit leads a single
data flit. Hence, the load on the data and control networks are the
same. However, two of these narrow control flits are injected and pro-
cessed per cycle. Thus, even when the data network is near saturation,
the control network is still seeing minimal contention.



experience is equivalent to the 1-cycle routing and arbitra-
tion latency incurred by virtual-channel flow control. If the
destination is available ahead of the packet data, the con-
trol flits can be injected ahead of the data without stalling
the data flits. In this case, flit-reservation flow control with
leading control realizes the same latency reduction as with
fast control. For this example network with 1-cycle propa-
gation delays, flit-reservation flow control with the control
flit leading by at least 10 cycles cuts the base data latency
from 15 cycles to 6 cycles.

Table 3 summarizes the experimental results reported in
this section, comparing the base latencies and throughput
experienced by virtual-channel flow control and flit-reser-
vation flow control.

5.  Discussion

All-or-nothing versus per-flit scheduling.  When con-
trol flits arrive at the output scheduler of a flit-reservation
router, its data flits are scheduled and successful reserva-
tions are fed back to the input scheduler flit-by-flit. Each
successfully scheduled data flit can hence move on to the
next hop, regardless of whether all the data flits led by this
control flit has been successfully scheduled. An alternative
to this is all-or-nothing scheduling, whereby data flits are
only forwarded to the next hop if the control flit succeeds
in scheduling all its data flits.

The advantage of all-or-nothing scheduling is that no
schedule list needs to be maintained, as data flits never
arrive before control flits. However, all-or-nothing sched-
uling results in data flits being frequently stalled in the
buffer pool due to insufficient free buffers on the next node
to accommodate all data flits led by the control flit. Per-flit
scheduling, on the other hand, allows scheduled data flits
to move ahead to the next hop, thus freeing the buffers they
occupy on the current node. Other data flits bound for this
node can then reuse these buffers. As a result, per-flit

scheduling attains higher throughput than all-or-nothing
scheduling.

Excess capacity on control network.  With either fast
or leading control, flit-reservation flow control relies on
the excess capacity on the control network relative to the
load on the data network. When the data network is experi-
encing high contention, control flits must continue to be
able to race ahead through the lightly-loaded control net-
work and schedule reservations in advance, reusing buffers
and thus extending throughput. Excess capacity on the con-
trol network can be realized through loading the control
network with fewer control flits relative to data flits. For
instance, if we have 1 control flit leading 4 data flits, for a
5-flit packet, there are 2 control flits for the 5 data flits,
resulting in the load on the control network being 40% that
of the data network. Another way to realize excess capacity
is to increase the saturation throughput of the control net-
work, either by increasing the number of control virtual
channels, the number of control buffers, or the number of
control flits injected per cycle. Without this excess capac-
ity, when data flits are stalled, control flits will also be fac-
ing high contention. Advance reservations will thus be
unrealizable and buffers will not be quickly recycled to
improve throughput.

Single wide control flit versus multiple narrow-
width control flits.  Instead of injecting multiple narrow-
width control flits as in our example network, one wide
control flit can be injected per cycle. The wide control flit
leads several data flits. The advantage of a control flit lead-
ing a single data flit is that data flits will never arrive
before control flits and a schedule list need not be main-
tained. However, with multiple data flits led by a control
flit, bandwidth overhead is lower since only control flits
need a virtual channel identifier.

Buffer pool versus distinct buffer queues.  Instead of
the distinct queues of buffers used in virtual-channel flow
control, flit-reservation flow control uses a buffer pool for
each input channel. This is because there is no differentia-

TABLE 3. Summary of experimental results.

FR6 FR13 VC8 VC16 VC32
Fast Control
5-flit packets Base latency (cycles) 27 27 32 32 32

Latency at 50% capacity (cycles) 33 33 39 38 38
Throughput (% capacity) 77% 85% 63% 80% 85%

21-flit packets Base latency (cycles) 46 46 55 55 55
Latency at 50% capacity (cycles) 81 75 113 95 97
Throughput (% capacity) 60% 75% 55% 65% 65%

Leading Control
5-flit packets Base latency (cycles) 15 15 15 15 15

Latency at 50% capacity (cycles) 19 19 21 21 21
Throughput (% capacity) 75% 83% 65% 80% 85%



tion between data flits of different packets on the data net-
work layer. Each data flit is treated similarly, and contains
no tag to distinguish it from any other data flit. 

It should be noted though that the buffer pool does not
account for the improved buffer utilization of flit-reserva-
tion flow control. We simulated virtual-channel flow con-
trol with a shared buffer pool among its virtual channels
[TamFra92], but saw no improvement in network through-
put.

Buffer allocation at scheduling time versus just
before arrival.  Our implementation of flit-reservation
flow control reserves a buffer when an input reservation is
made but does not assign a particular buffer until the cycle
before the flit arrives.  If the buffer was assigned at reser-
vation time we could encounter situations where a single
buffer is not available for the entire residency of a flit and
thus the flit would need to be transferred from one buffer to
another during its stay at a node.  Waiting until flit arrival
to assign buffers eliminates the need for buffer transfers.

Figure 10(a) illustrates a case where a buffer transfer is
needed. Data flits A, B and C have buffers reserved and
allocated. Buffer 1 has been allocated to flit A which  will
leave in cycle 12. Data flit B holds buffer 2 and will depart
in cycle 11. Thereafter, buffer 2 is allocated to data flit C
which will arrive in cycle 12. At this point, the output
scheduler notes that there is a free buffer from cycle 12
onwards and reserves it for data flit D which leaves in
cycle 14. Unfortunately, as buffers were allocated at reser-

vation time without knowledge of future reservations, flit
D will need to reside in buffer 2 for cycle 12 and then be
transferred to buffer 1. If buffer allocations are deferred till
flit arrival, this situation will not arise, as shown in
Figure 10(b).

Synchronization issues.  Because data flits are identi-
fied solely by their arrival times, it is critical that the rout-
ers at the two ends of the link have a common time
reference.  If the routers operate mesochronously13, this is
not an issue as the timing of the two routers remains syn-
chronized with a fixed offset. With a plesiochronous link,
however, it is necessary to make the clock domain crossing
in the middle of the input buffer. The input side of the input
scheduler and buffer operates in the clock domain of the
transmitting router while the output side operates in the
local clock domain. In this case, buffers must be held for
one extra cycle before releasing them to avoid buffer con-
flicts when the transmit clock slips a cycle with respect to
the local clock.  

Error recovery.   As with any flow control method
involving control flits and state variables, the corruption of
control information can make it impossible to deliver data
flits. For example, if the time fields of a control flit are cor-
rupted, it becomes impossible to identify the data flits.
Similarly if the contents of the input or output reservation
tables become corrupted, one or more data flits buffered on
the node may be lost.

To minimize the probability of data loss, control flits
may be protected by an error detection code and retrans-
mitted in the event of an error. Also, the internal tables may
be protected with parity to detect corruption of internal
state. When a table error is detected, the affected data flits
are dropped.  This will be detected on the next hop when an
idle pattern is received instead of the affected data flit and
the collective state of the scheduling tables will return to a
consistent state with no lost buffers or stalled links.

Deadlock issues.  Past research into deadlock avoid-
ance for current flow control techniques such as store-and-
forward, virtual cut-through [Duato96], wormhole
[Duato95] and virtual-channel [Dally87] flow control have
identified various dependencies that exist and formally
detailed conditions for deadlock avoidance. Much of this
theory applies directly to flit-reservation flow control.
However, it must be extended to account for the dependen-
cies that may exist in both directions between control flits
that travel on virtual channels and data flits that share a sin-
gle buffer pool.

Figure 10. (a) An example where buffer transfers are
required due to buffers being allocated at reservation time.
Flits A, B and C were allocated buffers before the
reservation for flit D arrives. As a result, flit D needs to be
transferred from buffer 2 to buffer 1 in cycle 13. (b) Here,
buffer allocations are performed just before flit arrivals.
Buffer 2 is allocated to flit D since it is the only one empty
when it arrives at cycle 12, and flit C will be allocated buffer
1 when it arrives at cycle 13. No buffer transfers are
needed.
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13. See [DalPou98] pp. 473-475 for a description of mesochronous and
plesiochronous synchronization.



6.  Conclusion

In this paper, we have introduced flit-reservation flow
control, in which control flits race ahead and reserve band-
width and buffers for data flits ahead of time. Unlike exist-
ing flow control methods that hold buffers from the time a
data flit departs a node till the time the credit is received,
the advance scheduling done in flit-reservation flow con-
trol enables a buffer to be held only during actual buffer
usage. As a result, buffers can be immediately reused. The
advance reservations also reduces data latency, since data
flits can pass through nodes without waiting for routing
and arbitration decisions to be made.

Simulations comparing flit-reservation flow control
with virtual channels show that flit-reservation flow con-
trol is able to extend the throughput achieved by virtual-
channel flow control. Experiments also show the lower
base latency achieved by flit-reservation flow control.

Flit-reservation flow control requires control flits to
traverse the network ahead of data flits, making reserva-
tions in advance. This can be realized through fast on-chip
control wires, or the pipelining of control flits one or more
cycles ahead of data flits on a control network with the
same propagation delay. Experiments show that when con-
trol flits are injected 1 cycle in advance of data flits on a
control network with the same propagation delay as the
data network, flit-reservation flow control can similarly
improve throughput over that of virtual-channel flow con-
trol and realize significant buffer savings.

Immediate buffer reuse and elimination of routing and
arbitration latency can also be achieved through the use of
statically-scheduled flow control, where a compiler sched-
ules the allocation of buffers and channel bandwidth prior
to program execution. However, flexibility is sacrificed, as
a statically-scheduled network is unable to support
dynamic data-dependent communication patterns. By
scheduling buffers and channel bandwidth dynamically at
packet injection time instead of statically at compile time,
flit-reservation flow control is able to offer many of the
advantages of statically-scheduled flow control, while sup-
porting the flexibility of a dynamically-routed network.

As technology scales, buffer memory and network
latency become ever more critical in communication net-
works. Flit-reservation flow control is able to achieve sav-
ings in both critical resources without sacrificing network
performance or flexibility.
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