
EE482C: Advanced Computer Organization Lecture #11
Stream Processor Architecture
Stanford University Thursday, 9 May 2002

Vector Architectures

Lecture #11: Thursday, 9 May 2002
Lecturer: Prof. Bill Dally
Scribe: James Bonanno
Reviewer: Mattan Erez

Logistics :

- Project Update: presentations next Tuesday (May 14)

- Read all project proposals

- People not in project groups should form them soon

The topic of this lecture was vector architectures. After discussing a definition of vec-
tor architectures, similarities and difference between the stream architecture (as idealized
in Imagine) were discussed, as were the corresponding advantages and disadvantages. The
discussion concluded by focusing on reasons for the apparent fall in popularity of vec-
tor machines compared to the “Killer Micros”, and how this relates to stream processor
architecture. The two papers read in preparation for this discussion were:

• Roger Espasa, Mateo Valero, and James E. Smith, ”Vector Architectures: Past,
Present, and Future,” ICS ’98, Proceedings of the 1998 International Conference
on Supercomputing, July 13-17, 1998, Melbourne, Australia. ACM, 1998.

• John Wawrzynek, Krste Asanovic, and Brian Kinksbury, ”Spert-II: A vector Mi-
croprocessor System,” IEEE Computer, March 1996.

1 What is a Vector Processor?

It was suggested that a key aspect of vector architecture is the single-instruction-multiple-
data (SIMD) execution model. SIMD support results from the type of data supported
by the instruction set, and how instructions operate on that data.

In a traditional scalar processor, the basic data type is an n-bit word. The architecture
often exposes a register file of words, and the instruction set is composed of instructions
that operate on individual words.

In a vector architecture, there is support of a vector datatype, where a vector is a
collection of VL n-bit words (VL is the vector length). There may also be a vector register
file, which was a key innovation of the Cray architecture. Previously, vector machines
operated on vectors stored in main memory. Figures 1 and 2 illustrate the difference
between vector and scalar data types, and the operations that can be performed on
them.

2 EE482C: Lecture #11

0

1

2

3

4

5

6

7

63 0

63 0

(A) (B)

Figure 1: (A): a 64-bit word, and (B): a vector of 8 64-bit words

2 Comparing Vector and Stream Architectures

The following table lists similarities and differences between vector and stream architec-
tures that were discussed in class. These aspects are described below in more detail.

Similarities Differences

SIMD cross-pipe communication
vector Load/Store record vs. operation order
pipes (DLP support) local register files (LRF) and microcode

2.1 Similarities

2.1.1 SIMD

Vector architectures exhibit SIMD behaviour by having vector operations that are ap-
plied to all elements in a vector. Likewise, in stream architectures, the same sequence
computation (microprogram) is performed on every stream element. SIMD has three
main advantages:

1. Requires lower instruction bandwidth.

2. Allows for cheap synchronization.

3. Allows easier addressing.

2.1.2 Vector Load/Store

Vector load/store instructions provide the ability to do strided and scatter/gather mem-
ory accesses, which take data elements distributed throughout memory and pack them

EE482C: Lecture #11 3

R1

3

R2

5

R3

8

V1

1

2

3

4

5

6

7

8

V2

9

10

11

12

13

14

15

16

V3

10

12

14

16

18

20

22

24

+

+

ADD R3,R1,R2

VADD V3,V1,V2

Figure 2: Difference between scalar and vector add instructions

into sequential vectors/streams placed in vector/stream registers. This promotes data
locality. It results in less data pollution, since only useful data is loaded from the memory
system. It provides latency tolerance because there can be many simultaneous outstand-
ing memory accesses. Vector instructions such as VLD and VST provide this capability.
As illustrated in figure 3 VLD V0,(V1) loads memory elements into V0 specified by the
memory addresses (indices) stored in V1. VST (V1), V0 works in a similar manner. VST
(S1), 4, V0, stores the contents of V0 starting at the address contained in S1 with stride
of 4.

2.1.3 Pipes

Having multiple pipes allows easy exploitation of DLP. A vector architecture specifies
that the same operation is performed on every element in a vector. It does not specify
how this is implemented in the microarchitecture. For example, the T0 processor has
8 pipes, thereby allowing a vector operation to be performed in parallel on 8 elements
of the vector. Figure 4 shows how the T0 processor structures its vectors. In that
architecture, the vector length is 32. Having 8 pipes therefore results in an arithmetic
operation latency of 4 cycles.

4 EE482C: Lecture #11

81 63V1:

5 3

5 3 9

9

VLD V0, (V1)

Memory

.....V0:

Figure 3: Indexed Vector Load Instruction

V0

V1

16 vector registers

8 pipes

4 cycle latency
to do op
on all vector
elements

Figure 4: T0 vector organization

2.2 Differences

2.2.1 Cross-Pipe Communication

A stream architecture may allow cross-pipe communication (In Imagine, this is inter-
cluster communication), while such communication in vector processors is only possible
by rearranging the data ordering with load/store instructions to/from the memory sys-
tem.

EE482C: Lecture #11 5

2.2.2 Record vs. operation order, LRF and microcode

Vector processors perform single operations on entire vectors, while stream processors like
Imagine execute entire micro-programs on each data element of a stream. The effect of
this difference is that in vector architectures, the intermediate vectors produced by each
instruction are stored in the vector register file, while in a stream processor, intermediate
values are consumed locally. They are stored in local register files, and are accessed at a
higher bandwidth. A possible disadvantage is the apparent increase in code complexity
in such a stream processor.

3 Memory Bandwidth

It was suggested that the true reason why vector supercomputers are fast is because
of the memory bandwidth that they provide. They do so by supporting banked mem-
ory and allowing several simultaneous outstanding memory requests. Such architectures
do not rely on cache techniques to achieve reasonable performance. They therefore of-
ten outperform cache-reliant architectures in applications that make “random” memory
accesses.

4 Killer Micros

Key reasons why today’s microprocessors have displaced widespread use of vector archi-
tectures include:

1. CMOS became a universal technology, while many vector supercomputers continued
to use Bipolar where the yield was poor on dense chips.

2. A processor could be implemented on a single chip in CMOS, while older vector
machines involved multi-chip implementations.

3. Several applications have very good performance on non-vector machines.

4. Caches exploited locality to improve memory system performance without perform-
ing the expensive optimizations often found in vector machines.

Figure 5 shows the relative performance growth curves of CMOS and Bipolar tech-
nology, and also memory performance.

4.1 Relevance to Stream Processors

It seems prudent to use CMOS technology for the foreseeable future, to optimize for high
bandwidth, and to provide latency tolerance and SIMD execution. Finally the question
was posed as to why there have been so few architectural innovations to vector processors?

6 EE482C: Lecture #11

Bipolar

CMOS

1990
time

performance

Memory locality

CMOS
performance

tim

(A) (B)

Figure 5: Performance Growth of (A) CMOS vs Bipolar, (B) Memory Performance

Perhaps this is due to the fact that key innovations are often made during the earlier
generations of an architecture.

