
Mapping Brook Stencils to
Imagine

Jacob Chang
Nathan Hill

Jae-Wook Lee
Alex Solomatnikov

Motivation

� KernelC programming is hard:
� Cluster communication is limited and depends

on particular access pattern
� No conditionals, only predicates
� Bookkeeping of state/data is needed

� High-level streaming language (Brook):
� Easy to use
� No architecture specific details
� But no compiler yet!

Idea
� Main Brook abstractions are streams and

stencils:
� Streams specify the shape of data
� Stencils specify access patterns

� Mapping arbitrary stream/stencil pair to
KernelC code:
� Does not depend on the computation itself
� The rest is just a substitution of stencil elements

into user formula
� Instruction scheduling/register allocation can be

handled by KernelC compiler

1D Example
� Stencil [-3, 1]

SRF

Clusters

8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23

1198

7

Objectives

� Minimize cluster communication
� May be a limiting factor

� Minimize storage requirements
� If possible fit everything into LRFs
� If not, use scratchpad for storage

� Handle as large stencil space as
possible, i.e. 1D, 2D, …

� Try to utilize property of computation
(i.e. associativity) for optimization

Approach
� Develop samples of KernelC code for

various types of streams/stencils
� Write a Perl script to generate code for

loop/communication
� Use simple kernel for evaluation of results,

i.e. convolution
� Analyze limiting factors:

� Arithmetic unit utilization
� Inter-cluster communication
� Storage

Issues

� KernelC scheduler
cannot restructure
computation, e.g. if
you write:
o = a+b+c+d+e+f =>

� Dependency is the
limiting factor!

� Our solution: binary
tree generated by Perl

But …
� KernelC uses “lazy”

scheduling, i.e. schedules
ops as late as possible:
� Lifetime of temporaries

increased
� Register file pressure is

increased
� Scheduler fails even for

relatively small stencils

� Our solution: asymmetric
tree generated by Perl

Asymmetric Tree

� The length of critical
path can be adjusted:
� Forces the scheduler to

schedule ops earlier
� Reduces register file

pressure

+

+

+

+

+

+

+

+

Results: 1D stencil, convolution
Cycle count vs stencil size

0

20

40

60

80

100

120

140

160

180

-100 -80 -60 -40 -20 0 20 40 60 80

X ([-x, 0] or [0, x])

C
yc

le
s

pe
r i

te
ra

tio
n

Non-pipelined
Pipelined
Scratchpad limit
Multiplier limit

Coefficients in
the scratchpad

Associative Computations
� Convolution computation can be broken

into several parts, i.e.:
a = c0*x0+c1*x1+c2*x2+c3*x3
b = c4*x4+c5*x5+c6*x6+c7*x7
out = a + b

� Instead of storing all input data for next
iteration we can store computed partial
convolutions:
� Storage and bandwidth requirements reduced by

a factor of 8
� Can handle larger stencils more efficiently

Results: 1D, associative case

0
20
40
60
80

100
120
140

-150 -100 -50 0 50 100

Stencil Size

C
yc

le
 T

im
e

Coeff in SP

Coeff in LRF

Ideal - Bounded by
Multiply

2D Streams/Stencils

� Example:
� 2D stream 27x8 elements
� Stencil 5x5: -2�x�2, -2�y�2

81 82

0
27
54

1
28
55

2
29
56
83

3
30
57
84

…
…
…
…

26
53
80
107

…

CC CC C
CC CC C

C C
C C

C C

2D Streams/Stencils

Stream 0

Stream 1

Stream 2

0 1 2 3 4 5 6 7

24 25 26 27 28 29 30 31

48 49 50 51 52 53 54 55

8 9 10 11 12 13 14 15

1 20

32 33 34 35 36 37 38 39

27 28 29

56 57 58 59 60 61 62 63

54 55

64 65 66 67 68 69 70 71

56

cc

cc

cc

cc cc c
cc cc c

2D Stencil Issues

� Storage Requirement
�

� We also exploited the property of operation (e.g. associativity)
aggressively to mitigate storage requirement in 2D case.
(16*9 was schedulable for 2D convolution with partial sum.)

� Stream Requirement
� In case of Hsten>8, put a preprocessing kernel for consolidation

� Scheduler Issue
� Currently, register allocation failure for 7*7 stencil

(4*3, 5*5, and 6*6 are okay. 25*4 takes forever..)

overhead)constant C and , % ,8 (

1)1(registers) of (#

2 ===

+×+××










+







 −⋅+=

cDstreamc

stenstenstenc
c

stensten

nWdnwhere

CHWHn
n

HdW

Conclusions

� Efficient mapping of Brook stencils to
Imagine was demonstrated:
� General case
� Associative computation

� Scheduler issues:
� No computation restructuring
� “Lazy” scheduling greatly increases register file

pressure
� Second port of scratchpad is not used since

scheduler can’t resolve dependency

