Mapping Brook Stencils to
Imagine

Jacob Chang
Nathan Hill
Jae-Wook Lee
Alex Solomatnikov

Motivation

KernelC programming is hard:

B Cluster communication is limited and depends
on particular access pattern

B No conditionals, only predicates
B Bookkeeping of state/data is needed

High-level streaming language (Brook):
B Easy to use

B No architecture specific details
B But no compiler yet!

ldea

Main Brook abstractions are streams and

stencils:
B Streams specify the shape of data
B Stencils specify access patterns

Mapping arbitrary stream/stencil pair to

KernelC code:
B Does not depend on the computation itself

B The rest is just a substitution of stencil elements
Into user formula

B Instruction scheduling/register allocation can be
handled by KernelC compiler

1D Example

SRF

Clusters

Stencil [-3, 1]

86

@7 18

19

20

23 22

23

Objectives

Minimize cluster communication
B May be a limiting factor

Minimize storage requirements
B If possible fit everything into LRFs
B If not, use scratchpad for storage

Handle as large stencil space as
possible, 1.e. 1D, 2D, ...

Try to utilize property of computation
(i.e. associativity) for optimization

Approach

Develop samples of KernelC code for
various types of streams/stencils

Write a Perl script to generate code for
loop/communication

Use simple kernel for evaluation of results,
l.e. convolution

Analyze limiting factors:
B Arithmetic unit utilization

B Inter-cluster communication
B Storage

Issues

DDDDDD

KernelC scheduler

cannot restructure

DDDDDD

computation, e.g. if
you write:

DDDDDD

0 = at+b+c+d+e+f ==

Dependency is the S

limiting factor!

DDDDDD

Our solution: binary
tree generated by Perl

But ...

[l KernelC uses “lazy”
scheduling, I.e. schedules
ops as late as possible:

B Lifetime of temporaries
Increased

B Register file pressure is
Increased

B Scheduler fails even for
relatively small stencils

[1 Our solution: asymmetric
tree generated by Perl

ADDO ADD1 ADD2

MULO MuULA DIvVO INOO

INO1 SP_0

52 4
54
56 -
58
60
62 -
64
66
68 -
70 A
72
74
76
8 {F
80 =
82
84
86
88 -
90 -
92
94
9%

98 =

Asymmetric Tree

The length of critical
path can be adjusted:

B Forces the scheduler to
schedule ops earlier

B Reduces register file
pressure

Results: 1D stencil, convolution

Cycle count vs stencil size
Coefficients in

1607 the scratchpad

140 +
c
g 120 4
o
2 100 -
o
o 80
(%]
Q
o 60 -
O

40 -

20 -

-100 -80 -60 -40 -20 0 20 —+— Non-pipelined 8
X ([-x, 0] or [0, x]) —=— Pipelined
Scratchpad limit
Multiplier limit

Associative Computations

Convolution computation can be broken
Into several parts, I.e.:

A = Cu™Xg+HC; X, +C, X,+C3 X,
— * * x>
out=a+b
Instead of storing all input data for next

iteration we can store computed partial
convolutions:

B Storage and bandwidth requirements reduced by
a factor of 8

B Can handle larger stencils more efficiently

Results: 1D, associative case

140 -
—— Coeffin SP
A 120
-=— Coeff in LRF
10N |
D 1UU
§ on Ideal - Bounded by
— .\'\ \ ou Multiply '
5 . ~ 60 —
> —
O - \ AN / n
n R =AY R o
" .‘\\\nn .
=%V [v
0
-150 -100 -50 0 50 100

Stencil Size

2D Streams/Stencils

Example:

B 2D stream 27x8 elements
B Stencil 5x5: -2=x=2, -25y=2

27 28 29:30 .. 53
54 55 56157 .. 80
81 82 83 84 .. 107

$ 2 8 % # 8 4 6

2D Streams/Stencils

Stream2| 48 49 50 51 52 53 (64 55

Stream 1 @ 28 29 30 31

Stream O O

= o o = = = =

2D Stencil Issues

Storage Requirement
(# of registers) = (|7Wsten +d EQHsten _1)—‘ +1jxnc % H

+W_ xH_ +C

sten sten sten

n

C

(wheren, =8,d =W, % n., and C = constant overhead)

Dstream

B We also exploited the property of operation (e.g. associativity)
aggressively to mitigate storage requirement in 2D case.

(16*9 was schedulable for 2D convolution with partial sum.)

Stream Requirement

B In case of H,.,>8, put a preprocessing kernel for consolidation

Scheduler Issue

B Currently, register allocation failure for 7*7 stencil
(4*3, 5*5, and 6*6 are okay. 25*4 takes forever..)

Conclusions

Efficient mapping of Brook stencils to
Imagine was demonstrated:

B General case

B Associative computation

Scheduler issues:
B No computation restructuring

B “Lazy” scheduling greatly increases register file
pressure

B Second port of scratchpad is not used since
scheduler can’t resolve dependency

