
Multi-Node Programming – Longest IP Prefix Matching 1H. Fu, H. H. Ng, Y. C. Ong

Multi-Node Programming –
Longest IP Prefix Matching:

A Stream Application using Multiple
Imagines in Different Configurations

Henry Fu, Harn Hua Ng, Yeow Cheng Ong
Stanford University

EE482C Project Presentation
Thursday, May 30, 2002

Multi-Node Programming – Longest IP Prefix Matching 2H. Fu, H. H. Ng, Y. C. Ong

Outline
• Motivation
• Goals
• Application: IP routing
• Setup
• Test methods, data, metric
• Results
• Challenges
• Conclusions

Multi-Node Programming – Longest IP Prefix Matching 3H. Fu, H. H. Ng, Y. C. Ong

Motivation
• Develop and evaluate methods to efficiently

map stream programs over multiple stream
processing nodes

• Examine ways to partition data and/or
instructions across the nodes

• Develop methods to coordinate multiple nodes
and to communicate data

• Evaluate methods for load balancing

Multi-Node Programming – Longest IP Prefix Matching 4H. Fu, H. H. Ng, Y. C. Ong

Goals
• Multi-node programming using multiple

Imagines
– Provide more computing power and higher

performance
• Requires more memory bandwidth and higher

communication overhead

Investigate different configurations that give
best performance with least overhead

Multi-Node Programming – Longest IP Prefix Matching 5H. Fu, H. H. Ng, Y. C. Ong

Introduction
• IP packet routing commonly used and can be

mapped as a stream application
– Each packet is independent

• Data Level Parallelism (DLP)
– Multiple flows of packets in router can be mapped

as different streams of data
• Thread Level Parallelism (TLP)

– Same instruction can be distributed to multiple
ALUs to perform multiple operations in parallel

• Instruction Level parallelism (ILP)

Multi-Node Programming – Longest IP Prefix Matching 6H. Fu, H. H. Ng, Y. C. Ong

Overview
• IP Routing

– Extract IP address information from each packet,
compared against a routing table, and re-routed to
appropriate nexthop address

– IP Packet traffic modeled as data stream
– After each lookup, each processor passes longest

match result, along with current packet to a
neighboring processor of another node to continue
longest prefix matching

Multi-Node Programming – Longest IP Prefix Matching 7H. Fu, H. H. Ng, Y. C. Ong

Algorithm used for IP address matching
– Within a Kernel:

• Distribute routing table entries to all clusters
– i.e. mask, destination address, nexthop

• Find mask length for each routing table entries
• Find match

– (Packet address) AND (mask) XOR (destination address)
• Keep track of length of longest prefix match, and

corresponding next hop

Multi-Node Programming – Longest IP Prefix Matching 8H. Fu, H. H. Ng, Y. C. Ong

Setup
• Baseline case

– Use 1 host processor and 1 Imagine
– 1 parallel data lane, 1 pipeline stage
– All results normalized according to baseline case

results

Imagine

H
os

t

Multi-Node Programming – Longest IP Prefix Matching 9H. Fu, H. H. Ng, Y. C. Ong

Setup (More)
• 2 Imagines

– Use 1 host processor and 2 Imagines
– 1 parallel data lane, 2 pipeline stages
– 2 parallel data lanes, 1 pipeline stage

Imagine

H
os

t

H
os

t

Imagine

Imagine

Imagine

Multi-Node Programming – Longest IP Prefix Matching 10H. Fu, H. H. Ng, Y. C. Ong

Setup (More)
• 4 Imagines

– Use 1 host processor and 4 Imagines
– 1 parallel data lane, 4 pipeline stages

Imagine

H
os

t

Imagine Imagine Imagine

Multi-Node Programming – Longest IP Prefix Matching 11H. Fu, H. H. Ng, Y. C. Ong

Setup (More)
• 4 Imagines

– 2 parallel data lanes,
2 pipeline stages

– 4 Parallel data lanes,
1 pipeline stage

H
os

t

Imagine

Imagine

Imagine

Imagine

H
os

t

Imagine

Imagine

Imagine

Imagine

Multi-Node Programming – Longest IP Prefix Matching 12H. Fu, H. H. Ng, Y. C. Ong

Configurations
• Pipelined configuration: total # of routing table

entries distributed evenly to all Imagine
processors in each pipeline stage
– Static load balancing

• Parallel configuration: total # of destination
addresses distributed evenly to all data streams
– Static load balancing

Multi-Node Programming – Longest IP Prefix Matching 13H. Fu, H. H. Ng, Y. C. Ong

Test Methods
• Program written in StreamC and KernelC
• Profiling used to estimate cycle count in each

kernel and total execution time

• Number of Imagines used: 1, 2, and 4
• Number of test packets used: 8, 32, 1024
• Number of routing entries used: 8, 32, 1024

Multi-Node Programming – Longest IP Prefix Matching 14H. Fu, H. H. Ng, Y. C. Ong

Test Data
• Randomly-generated destination addresses
• Routing table entries captured from major

router in ISP
– ner-routes.bbnplanet.net
– 119, 967 entries captured
– Subset of total entries randomly picked for

experiment
– C program to generate correct results and to verify

output of stream program

Multi-Node Programming – Longest IP Prefix Matching 15H. Fu, H. H. Ng, Y. C. Ong

Test Metric
• Execution time of single Stream Processor

configuration vs. that of multi-node
configuration
– 1, 2, 4 Imagines arranged in pipelined configuration

vs. 1 Imagine configuration
– 1, 2, 4 Imagines arranged in parallel configuration

vs. 1 Imagine configuration
• Communication overhead examined in > 1

Imagine configuration

Multi-Node Programming – Longest IP Prefix Matching 16H. Fu, H. H. Ng, Y. C. Ong

Test Results
• Pipelined Configuration

– Almost ideal speed up for large data set
– Significant overhead for small data set

Pipelined
Execution Time

Packets # Entries # Imagines Imagine 0 Imagine 1 Imagine 2 Imagine 3 Avg/Img Speed Up
8 1024 1 52325 52325 1

2 25636 26721 26178.5 1.99877762
4 12260 13408 13408 13345 13105.25 3.99267469

32 1024 1 209300 209300 1
2 102544 106884 104714 1.99877762
4 49040 53632 53632 53380 52421 3.99267469

1024 1024 1 6697600 6697600 1
2 3281408 3420288 3350848 1.99877762
4 1569280 1716224 1716224 1708160 1677472 3.99267469

8 32 1 1669 1669 1
2 833 868 850.5 1.96237507
4 415 450 450 450 441.25 3.78243626

Multi-Node Programming – Longest IP Prefix Matching 17H. Fu, H. H. Ng, Y. C. Ong

Test Results (More)
Pipelined - Speed Up Vs. # Imagines

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4
Imagines

Sp
ee

d
U

p

8 Packets, 1024 Entries 32 Packets, 1024 Entries 1024 Packets, 1024 Entries 8 Packets, 32 Entries

Multi-Node Programming – Longest IP Prefix Matching 18H. Fu, H. H. Ng, Y. C. Ong

Test Results (More)
• Parallel Configuration

– Almost ideal speed up for large data set
– Slight overhead for large data set

Parallel
Execution Time

Packets # Entries # Imagines Imagine 0 Imagine 1 Imagine 2 Imagine 3 Avg/Img Speed Up
32 1024 1 209311 209311 1

2 104650 104661 104655.5 2
4 52325 52325 52325 52336 52327.75 4

1024 1024 1 6697701 6697701 1
2 3348800 3348901 3348850.5 2
4 1674400 1674400 1674400 1674501 1674425.25 4

Multi-Node Programming – Longest IP Prefix Matching 19H. Fu, H. H. Ng, Y. C. Ong

Test Results (More)
Parallel - Speed Up Vs. # Imagines

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4

Imagines

Sp
ee

d
U

p

32 Packets, 1024 Entries 1024 Packets, 1024 Entries

Multi-Node Programming – Longest IP Prefix Matching 20H. Fu, H. H. Ng, Y. C. Ong

Challenges
• Limitation on # of imagines (max. 4) when 1

host used
• Complexity in multiple hosts simulation

– Out of order execution
• Profiling has restrictions
• Problems with communication and

synchronization among multiple imagines

Multi-Node Programming – Longest IP Prefix Matching 21H. Fu, H. H. Ng, Y. C. Ong

Conclusions
• Speedup increases with number of processing

nodes
– Communication and synchronization overheads

• Better to distribute data and instructions across
multiple nodes to increase parallelism

• Additional configurations to be tested

Multi-Node Programming – Longest IP Prefix Matching 22H. Fu, H. H. Ng, Y. C. Ong

Questions & Comments

