
EE482C: Stream Architecture
Spring Quarter 2001-2002
Project Topics

The course project will involve investigating an open problem related to stream
architecture. While the scope of projects is limited by the five weeks available for
completion, the intent is that they should lay the groundwork for a piece of research that
is worthy of publication in a leading conference.

The following is a list of possible project topics. It is by no means exclusive. If you have
an idea for a project that is not on this list, please suggest it to the course staff.

The timetable for the course project is as follows:

4/30 Discuss project topics during class meeting, project assigned
… Between 4/30 and 5/9 each group must meet with Professor Dally to discuss their

proposed project at least once. Special office hours will be made available for
these meetings.

5/7 Project proposal due
5/14 Project update – the progress of each group will be discussed during class

meeting.
… Between 5/14 and 5/23 each group must meet again with Professor Dally to

discuss project progress. Special office hours will again be made available for
these meetings.

5/23 Project review – the progress of each group will be discussed during class
meeting.

6/4 On 6/4 or 6/6, each project group will make an oral presentation of their project
6/6 Project report due. Details on the report requirements will be in the report

assignment.

Suggested Project Topics:
The suggested topics fall into four broad categories: stream processor organization,
stream applications, stream programming issues, and stream compilation.

Stream Processor Organization

Time vs. Space Multiplexing: Investigate the pros and cons of time multiplexed stream

processors (like Imagine) and space multiplexed stream processors (like RAW).
You should explore the continuum of alternatives between these two extremes.
Your investigation may include analytical models of program execution time and
load balance as well as simulation studies of architecture alternatives. Ideally you
would be able to draw a conclusion as to the optimum approach to take to
multiplexing (kernel distribution) in a stream processor.

1

Conditional Execution: Study alternative methods of handling conditionals (e.g., if-
then-else, do-while) in stream code. You may consider alternatives to or
variations of conditional streams and predication. You may also consider using
MIMD clusters rather than SIMD clusters – but make sure to consider the impact
of the loss of synchronization that this implies. Evaluate the cost and
performance of your proposed solutions.

Cache Organization: Investigate alternative cache architectures for a stream processor.

You may consider putting caches directly on the clusters, putting a cache between
the SRF and the memory, or putting a cache in front of each memory bank.
Special cache policies, e.g., for locking data to be modified, or to simplify
handling of read-mostly data, may be in order. Caches may be multi-ported or
multi-banked. Stream caches are fairly unique in that (as long as they are on the
memory side of the SRF) their latency does not matter. They serve solely as a
bandwidth multiplier. How does this affect their organization? How is coherence
handled in a multi-node stream processor system? What cache line sizes are
appropriate for stream processors?

Memory Architecture: Stream memory systems have different requirements than

conventional ones. They are tuned for high bandwidth and long stream accesses
rather than for minimizing latency for short memory operations. Consider how
stream memory operations affect the memory architecture. For example, what
addressing modes should the memory system support: strided, indexed, bit-
reversed, reversed, multi-dimensional, and others. Other things to consider are
distribution of streams across multiple nodes, and the fact that scatter/gather
operations produce many single record references.

Aspect Ratio: Given some number of ALUs in a stream processor (order of 100s), what

is the best way to distribute these resources across the three axes of parallelism:
data parallelism (more clusters), instruction-level parallelism (more ALUs per
cluster), and thread-level parallelism (more independent execution engines)?

Register File Architecture and Bandwidth Hierarchy: Develop and evaluate

alternative register file architectures for a stream processor. Alternatives to the
current LRF and SRF might involve more or less distributed LRFs, more than two
levels of register files, SRFs that can be accessed randomly within each lane, or
randomly to any location.

Legacy Architectures: Investigate how stream processing can improve the performance

of existing processors – (e.g., a P-4) – for example, by using stream scheduling to
make better use of the cache.

Stream Applications

Application Study: Pick an application and study how it can be implemented on a

stream processor. Possible applications could be scientific codes (e.g., gene

2

sequence analysis, radiation transport, hydrodynamics, n-body simulation), signal
processing (e.g., multi-user detection, adaptive beam forming), packet processing,
data mining, etc…. Your study should estimate the performance that streaming
can achieve (compared to more traditional architectures) on your application,
critique the ability of a stream architecture and programming system to handle
your application, and suggest improvements to the architecture and programming
system that would make them more suitable for your application.

Map Legacy Code to Streams: Study possible methods to automate the conversion of

existing (non-stream) programs to a stream programs. You may want to limit
your study to vector codes or even to dense matrix codes to simplify analysis. In
this case the goal would be to develop analysis procedures that scan loop nests,
extract the kernels and streams, and factor out the memory operations. A
successful analysis procedure should generate kernels with enough arithmetic
intensity to exploit a bandwidth hierarchy.

Stream Programming Issues

Irregular Data Structures: Investigate methods for executing programs with irregular

data structures (e.g., arbitrary graphs) on a stream processor. For example, a
stream may consist of a set of vertices each with a variable number of incident
edges. Consider how to represent irregular data structures, and how typical
irregular programs can be efficiently executed using the bandwidth hierarchy of a
stream processor.

Stream Language Design Issues: Investigate one or more issues in the design of a

stream programming language. For example, is it better for a language to have
retained state in kernels, as in Kernel-C and StreaMIT? or is it better for kernels
to be functional – as in Brook? Is it possible to abstract away the details of the
hardware – like the inter-cluster communication in Kernel-C without sacrificing
efficiency?

Multi-Node Programs: Develop and evaluate methods to efficiently map stream

programs over multiple stream processing nodes. You may consider partitioning
the data, the program, or both across the nodes. Develop methods for the nodes
to coordinate execution and communicate data values. You may also wish to
consider dynamic/automatic partitioning and load balancing, as well as making
decisions on data replication.

Variable-Length Streams: Study methods for efficiently handling variable-length

streams in a stream program. One possible option is to make kernels restartable
or resumable.

Stream Compilation

3

4

High-Level Stream Compilation Tools: Develop processes and tools that help map a
high-level stream programming language like Brook to a low-level language –
like Stream-C/Kernel-C. Given the limited time available you should pick one
step of the mapping process and focus your efforts on that step. Necessary steps
include converting conditionals to predication/conditional streams, using
persistent state (e.g. scratchpad), automatic strip-mining, inserting intercluster
communications.

Better Stream Compilation Tools: Investigate better methods of stream compilation.

This may include methods for kernel fission and fusion where appropriate,
scheduling of kernels and memory operations for minimum execution time, and
memory and SRF allocation.

Improved Communication Scheduling: There are many limitations of the current

implementation of communication scheduling. It does not efficiently handle
distributed register files with very sparse communication. Also, it does a very
poor job of allocating registers – resulting in register overflows for large kernels.
Develop new communication scheduling algorithms that overcome these and
other shortcomings of the present approach.

	Suggested Project Topics:
	Stream Processor Organization
	Stream Applications
	Stream Programming Issues
	Stream Compilation

