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1 Why are wavelets useful?

Wavelets have a few interesting applications, some of which are mentioned below. How-
ever, the applications of wavelets by themselves are limited. The ideas behind wavelets,
which we will be covering in this lecture and future lectures, are more important.

The most common use of wavelets is in signal processing applications. For example:

� Compression applications. If we can create a suitable representation of a signal, we
can discard the \least signi�cant" pieces of that representation and thus keep the
original signal largely intact. This requires a transformation which separates the
\important" parts of the signal from less important parts.

In the simplest case, we can decompose a signal into two parts: a low frequency
part, which is some sort of average of the original signal, and a high frequency
part, which is what remains after the low frequency part is subtracted from the
original signal. If we are interested in the low frequency part and hence discard
the high frequency part, what remains is a smoother representation of the original
signal with its low frequency components intact. Alternatively, if we are most
interested in the high frequency part, we may be able to discard the low frequency
part instead.

This approach, that of decomposing a signal into two parts, is common for all
wavelets. Also fundamental to wavelet analysis is a heirarchical decomposition, in
which we may apply further transforms to an already decomposed signal.

� Edge detection. With this application it is most important to identify the areas in
which the input image changes quickly. We can discard the smooth (low frequency)
parts. The simplest wavelet basis, the Haar basis (to be discussed later) is suitable
for this application.

Along this vein, the book by Strang and Nguyen describes a widely used application
of wavelets, �ngerprint compression, in which edge detection �gures prominently.

� Graphics. Two prominent uses of wavelets in graphics include
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1. Curve and surface representations; and

2. Wavelet radiosity.

These two reect two quite di�erent uses of wavelets.

� Numerical analysis. Wavelets are used in the solution of partial di�erential equa-
tions and integral equations.

2 History of Wavelets

The �rst use of wavelets was by Haar in 1909. He was interested in �nding a basis on a
functional space similar to Fourier's basis in frequency space. In physics, wavelets were
used in the characterization of Brownian motion. This work led to some of the ideas used
to construct wavelet bases. Wavelets were also used for analysis of coherent states of a
particular quantum system. Finally, in the signal processing �eld, S. Mallat discovered
that �lter banks have important connections with wavelet basis functions.

3 Filters and Filter Banks

3.1 Linearity and Time Invariance

Consider a discrete input signal x(n), a �lter H, and an output y(n). We express the
operation of H on the input signal x as y = Hx.

We call the �lterH \linear" if scaling the input scales the output, and we callH \time
invariant" if shifting the input (in time) correspondingly shifts the output. In these notes
all �lters will be assumed to be linear and time invariant.

3.2 Filter operation

If H is linear and time invariant, the we can express its operation as follows:

y(n) =
X
k

h(k)x(n� k):

This operation is called a convolution. The individual coe�cients h(i) are the \im-
pulse responses" of the system.

The equation y = Hx can also be written as an in�nite matrix, with y and x column
vectors and H in the following form:

2
6664
� � � � � � � � � � � � � � � � � �
� � � h(1) h(0) h(�1) � � � � � �
� � � � � � h(1) h(0) h(�1) � � �
� � � � � � � � � � � � � � � � � �

3
7775
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Note that the entries of the �lter are in reverse indexed order. If the input stream is
�nite with n elements, H is a �nite n � n matrix.

3.3 What is a basis?

For a given space of functions, a frame is a collection of functions such that any function
in the space is a weighted sum of the functions in the frame. In other words, if the
functions in the frame are f0 : : : fn : : :, then any function g can be written as g =

P
i aifi.

A basis is also a collection of functions. Any basis is a frame, but a basis also has the
property of linear independence. With a basis, the coe�cients ai of the expansion of the
function g (written as a weighted sum of the basis functions g =

P
n aifi) are uniquely

determined. Another way to state this property is that no function fi in the basis can
be written as a weighted sum of the other functions of the basis.

For a function space we can de�ne an inner product. One example of an inner product
is a dot product, used in a vector space. In a function space we de�ne the inner product
< f; g > of two functions f and g as

R
f(t)g(t)dt.

One desirable property of a basis is orthogonality. With an orthogonal basis, the
inner product of two basis functions fi and fj is equal to zero if i 6= j:

A second desirable property is orthonormality, which implies that taking the inner
product of a basis function fi with itself equals 1. For our functional basis we see thatR
f2(t)dt = 1.
In summary, an orthogonal, orthonormal basis implies that

< fi; fj >=

(
1 i = j
0 i 6= j

So why is orthonormality a desired property? Let us de�ne a function x as the
weighted sum of the basis functions, x =

P
aifi. We would like to �nd the coe�cients

ai, and orthonormality makes this simple. We only need to take the inner product of the
function x with ai's associated basis function to �nd the associated coe�cient ai.

< x; fj > =
X
i

ai < fi; fj >

= aj < fj; fj >

= aj

3.4 Filters and wavelets, Haar �lters

Each wavelet basis has two �lters associated with it. In general those �lters are expressed
in the form y(n) =

P
h(n)x(n).

The Haar basis is particularly simple. The two �lters are H0 and H1 and are de�ned
as follows:

H0 : y(n) =
1

2
x(n) +

1

2
x(n� 1)
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H1 : y(n) =
1

2
x(n)� 1

2
x(n� 1)

For H0, all h coe�cients are zero except for h0(0) = 1=2 and h0(1) = 1=2. Similarly, in
H1, h1(0) = 1=2 and h1(1) = �1=2.

H0 computes a moving average of its input, resulting in a sequence which is smoother
than the initial sequence. Hence it is a low pass �lter. H1 computes a moving di�erence
and serves as a high pass �lter.

3.5 Scaling functions and the dilation equation

We de�ne a function � as a \scaling function". Scaling functions obey the dilation
equation,

�(t) = 2
X

h0(k)�(2t� k): (1)

Note that the �lter coe�cients used (the h0's) are from the �rst of the pair of �lters. We
will use the second �lter later.

If this equation has an appropriate solution �(t), then we can construct a frame using
any integral values of j or k in the following generating relation:

�(2jt� k): (2)

Next we introduce the wavelet equation (3), which uses the coe�cients from the
second pair of �lters:

w(t) = 2
X

h1(k)�(2t� k): (3)

We generate a wavelet basis with a similar generating relation

w(2jt� k):

Note that scaling functions don't form a basis; wavelets do. But wavelets are con-
structed from scaling functions, so we have to �nd a scaling function �rst.

As can be seen from the wavelet equation, wavelets are de�ned as linear combinations
between scaling functions one level below, where a \level" is de�ned as the set of all scaling
functions generated with a given j.

For instance, the Haar scaling function satis�es the dilation equation with the solution

�(t) = �(2t) + �(2t� 1):

And the Haar wavelet satis�es the wavelet equation with the solution

w(t) = �(2t)� �(2t� 1):

The Haar basis spans the space of all functions with integrable square.
Haar wavelets are orthogonal.
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4 Filters and Filter Banks

4.1 De�nition of several operators

Here we will de�ne four operators and describe their operation (Figure 1).

 2

 2H0

H1

Figure 1: Our 4 operators

The �rst operator, H = H0, is the Haar moving average �lter. It outputs the average
of its current input and its previous input.

The second operator, H1, is the Haar moving di�erence �lter. It outputs half the
di�erence between its current input and its previous input.

The third operator, " 2, is an upsampling operator. It outputs each input twice,
outputting at double the rate of its input.

The fourth operator, # 2, is a downsampling operator. It outputs every other input
it receives, outputting at half the rate of the input.

4.2 Overview

We will look at two �lter banks, an analysis bank and a synthesis bank. The analysis
bank will use the Haar �lter pair, consisting of a low pass and a high pass �lter. We would
like to pick a synthesis �lter bank such that the output of the analysis and synthesis �lter
connected in series is the same as the input into the analysis �lter, with perhaps a time
delay.

First we will look at the analysis bank, then the synthesis bank, then we will put
them together and show that the aforementioned property holds.

4.3 Haar analysis bank

Figure 2 shows the analysis bank.
The input comes in on the left side, and the output of the �lter bank leaves through

the two paths on the right side. It is desirable (but not necessary) that the bandwidth
and storage requirements in the system be equal to those of the input stream. Hence,
the downsampling operators cut the bandwidths in half (compared to that of the input
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 2

 2

H0

H1
Figure 2: The Haar analysis bank

stream) on each of the two output streams, and the overall bandwidth requirement en-
tering the analysis bank is equal to that leaving the bank. In this case the �lter bank
can be viewed as a linear transform: if the input signal had �nite length n, the output
will also have length n, consisting of two halves, each having length n=2.

4.4 Synthesis bank

Given the above analysis bank, what synthesis bank should we use to reproduce the input
on the output? The basic analysis �lter structure is shown in Figure 3. The output of
each of the upsampling �lters has the same bandwidth as the initial input stream, but
note the outputs of �lters F and G are summed to create an output stream with the
same bandwidth as the original input stream.

+
G

F 2

 2

Figure 3: The basic synthesis bank

Conveniently enough, it turns out that we can use the Haar moving average �lter H0

as the �lter F in Figure 3 and similarly, replace G with �H1. This structure is shown in
Figure 4.

The complete �ltering system is shown in Figure 5.
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 2

Figure 4: The Haar synthesis bank
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 2

Figure 5: The complete system

5 Transforms used for analysis and construction of

�lters

Two related transforms are the Fourier transform and the z transform. To see more
background on Fourier transforms, please consult the handout on \Antialiased Shifting
and Resizing" distributed in class. Both transforms are described in detail in most signal
processing books.

5.1 The Fourier Transform

The Fourier transform is de�ned on both a discrete signal x(k) as

X(!) =
X
k

x(k)e�jk! (4)

and a continuous signal x(t) as

X(!) =
Z
x(t)e�jk!dt:

Following the signal processing tradition, we use j to denote
p�1.

5.2 The z Transform

The z transform is similar but does not use powers of e�j!. instead choosing powers of
z:

X(z) =
X
k

x(k)z�k:
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5.3 Frequency response

The frequency response of a �lter H is written as H(!) (or H(ej!)). In Fourier space, the
frequency response is useful for analyzing linear time invariant �lters. Why? Convolution
(i.e. the operation we use to describe �lter operation) is simply multiplication. In other
words, the operation

y(n) =
X
k

h(k)x(n� k)

in Fourier space is equivalent to

Y (!) = H(!)X(!):

We can see, then, that H(!), used as a �lter, serves to emphasize or deemphasize fre-
quencies in the input signal. Each frequency component of the input X(!) corresponding
to a frequency ! is scaled by H(!). For example, a low-pass �lter passes through com-
ponents with small ! (H(!) is close to 1 when ! is small) and suppresses high-frequency
components (H(!) is close to 0 if ! is close to �).

5.4 Frequency response of the Haar basis

First we will look at the frequency response of H0, the moving average function. Recall
that the frequency response of an input stream is de�ned in (4). InH0 the only coe�cients
that are non-zero are h(0) = h(1) = 1=2.

Thus we can calculate the input response using (4):

H0(!) = (1 + e�jk!)=2

= e�jk!=2(ejk!=2 + e�jk!=2)=2

= e�jk!=2 cos(!=2)

and jH0(!)j = cos(!=2).
With a similar derivation we can show that jH1(!)j = j sin(!=2)j.


