Imagine Programming System
User’'s Guide

Peter Mattson
Ujval Kapasi
John Owens

Scott Rixner

May 11, 2002

Table of Contents

1.0

2.0

3.0

Introduction 7
1.1 ROAAMAED. . oottt e e 7
SEUD o 8
21 Toolset Files. ... 8
22 CreatingaprojeCt. v i e 10
23 FileStructure 11
2.3.1 Shared header fileformat (*_kc.hpp) 12
2.3.2 KernelCfileformat (*_kc.cpp)ovvvviviii ... 13
2.3.3 StreamCfileformat (*_sc.cpp) ... vv i 13
24 Exercise, Stepl ... 14
KernelC Language Specification 15
3L TYPES .o 15
311 BaSIC TYPES o ittt 15
312 ReECOTd TYPES o oie ettt e e 15
3.1.3 TypeQualifiers ... 16
3.1.4 Preprocessor Directives 17
315 Comments ... e 17
32 KENES. .. 17
3.3 VariableDeclarations. 17
331 Initid Values ... 17
34 Control Flow ... 18
341 CoUuNtLOOPS .o ei ettt 18
342 SIreamM LOOPS . ..ot e 18
3.4.3 Conditional LOOPS ... v v 18
344 LoopOptimization —o 19
3.5 InlineFunctionsandMethods 19
351 EXamMpPleS ..o 20
352 Limitations ...t e 21
3.6 Operationsouii i 22
3.6.1 ADD 22
3.6.2 SATURATINGADD ...ttt e 23
3.6.3 SUB .. 23
3.6.4 SATURATING SUBot 23
365 ABS 24
3.6.6 ABD ... 24
3.6.7 Bitwise Logical Operations (AND, OR, XOR, NOT) 24
3.6.8 Comparison Operations (EQ, NEQ, LT,LE,GT,GE) 24
3.6.9 SELECT .. i 25
36.A0MUL 25
36.1LMULD o 25
36.12MULRND .o 26
3603 DIV 26
BB AFSORT . .ot 26
36.15SHIFT (logical) ...t 26

May 11, 2002

4.0

3.6.16 SHIFTA (aithmetic) ...t 27
36,17 ROTATE . e 27
36.18SHUFFLE ... e 27
36.19SHUFFLED ... 28
36,20 FT Ol .o e 28
36, 2L FRAC . . 28
36, 221TOF. .. 29
36.231ITOCC .. e 29
3.6.24 CCT Ol L e e 29
3.6.25Type Cast Operalorsii ittt e 29
36,26 HI L e 30
36,27 L0 e 30
3.6.2BRNDM e 30
36,20 SATM L e e 30
3.6.30 CHECK OVF . e e 30
3.6.3LCHECK UNF . e e 31
3.6.32COMMUCPERM e e 31
3.6.33COMMCLPERM e 32
3634 INPUT e 32
36,35 0UTPUT o e 33
3.6.36 CONDINPUT ... e e e e e e e 33
3.6.37CONDOUTPUT .. i e e e 33
3.6.38CONDALLINPUT ... e 34
3.6.39 CONDALLOUTPUT ... et e e e e 34
36 40FLUSH .. 34
3641 CI D . e e 35
36.42UCID .. e 35
36.43SYNCH .. e 35
37 EXercise, tePp2 . ..o 36
StreamC Language Specification 38
4.1 ImagineBasic TypesinStreamC....................... 38
42 EAMS. o it e e 38
421 NAMED Streamsot 38
422 NUl SIrEamMS ..ot e 38
423 newStreambData 38
424 SIMple ASSIgNMENSottt 39
425 DeENVEioNS ...t 39
4.2.6 Overriding Record Size and Specifying Coordinatesin Words ... 40
427 COUNtUP SITEAIMS ..ottt e ettt et 40
4.2.8 Stream Derivation Restrictions oo 411
4.3 Microcontroller Variables. 41
A4 KENES. ... e e e 42
441 Keneg StreamRestarts ... 42
45 Copying SIreamsooii e 42
4.6 Loading/SavingStreams.t 43
4.7 Network Operations., 43
471 StreamROULES e 44

May 11, 2002

5.0

6.0

7.0

8.0

9.0

4.7.2 Network StreamRestarts 44
4.8 Controlling Multiple Imagines with One Stream Program . . . 45

4.9 Profiling Annotations. 45
4.9.1 Designating which part of the application to profile 45
4.9.2 Data-dependent stream derivations 46
4.9.3 Data-dependent control flow, 47
4.9.4 Restrictionson newStreamData c.coiiiiii .. 49

4 10EXErCiSe, P 3 ..o 50

IScd, the Kernel Scheduler 52

51 Optimizations.vu it 52

52 InputFIles. 52

53 CommandLine.couiuiiiii i, 52

54 CommandLineOutput.cciiiininnenen... 55

55 Output Files ... 58

56 Exercise, tep4 59

Run-time Tools Introduction 60

6.1 Simulator ScriptFiles. i 60

6.2 UsingaSimulator. 60

6.3 Commandlineoptions.c.ccviiinnnnn... 61

6.4 DataFileFormats. 62

6.5 Example, part5 64

IDebug, the Functional Simulator 65

7.1 Using IDebug withadebugger.ttt 65

7.2 Exercise, part 6.t 66

|Sim, the cycle accurate smulator 67

8.1 ISIMSemMantiCs.o v 67

8.2 ISIMCommands.t 67

83 DEDUGING . . oot 70

B4 SAtiStiCS. . ..ot 71
8.4.1 Statsfor clustersand functionunits 71
842 Statsfor SRF 73
8.4.3 Statsfor theMicrocontroller 74
8.4.4 StatsfortheMemory System 74

8.5 MicrocodeBreakpoints, 76

8.6 Simulator Example. 77

| Stream, the Profile Compiler 84

9.1 Preparing an application for profiling 84
9.1.1 Whattoprofile? 84

9.2 Howtoannotateit? ..., 84
921 Whatinputdatatouse? it 84

9.3 Genegratingaprofile............... 85

May 11, 2002

9.3.1 Commandlineoutput i 85
932 OUPULTIIES ..ottt ettt e e 86
9.3.3 Profileinformation (_info.txt) file 87
9.3.4 Common QUESLIONSttt e 89

9.4 SPMINING. ..ot 89
9.5 Softwarepipeining i 92
9.6 Combining stripmining and software-pipelining.......... 101
9.7 Exercise, part 8.o 102
10.0 SchedViz, the Interactive Visuadizer 103
10.ABasicUSage . .o oo 103
10.21ScdKernel Schedules. 103
10.2.20PErationNS . ovti i 103
10.22BasicBlocks ... 104
10.2.3DependenCies ...t 104
10.31Stream Resource Allocations 105
10.3.1Stream OperationSot 105
10.3.2Allocated RESOUICES ... oot 105
10.33Readsand Writes 105
10.41Sim Application Traces.o v i i ann 106
10.4.1USed RESOUICES .. ittt ettt e 107
1042 0ther oo 107
105MenuReference. 107
105 AFlEe 107
105 2 VB 107
10.5.3T00IS oot 108
10.5.4WINAOW ..t 108
1055 HEID oo 108
106FNdDIalog. . .o veee e 108
10.7SchedulerReplayo oo 108
108TextEditor ... 109
10.9Exercise, part 9. . ..o i 109
11.0 Advanced TOPICS .. oo i i e 110
11.1 Making aKernel Passing Register Allocation............ 110
11.1.1 Too many temporary variables: 110
11.1.2 Loop carried state used in multiple locations. 110
11.1.3 Loop carried variables concentrated on one unit: ~ 111
11.1.4 Loop-carried variablesin a specific register file: 111
11.1.5C0ther problems 111
11.2USINg REGIESSION . . . ot oottt 111
11.2.1 StreamC REGreSSION . ..o v vttt 112
11.3UsingVerilogo 113
11.4Using specia hardwareunits. 114
11.4.1 Defining ahardwarekernel it 114
11.4.2 Modifying IStream 115
1143 Modifying ISim ..o 115

May 11, 2002

May 11, 2002

Introduction

1.0

Introduction

1.1

This document describes how to develop applications for the Imagine Media Processor
using the Imagine Programming System. Imagine is a stream processor: it operates on
sequences of data records called streams. Applications written for Imagine have two
parts: kernels that define operations on streams and a stream program that defines the
streams and the high-level control and data flow between kernels.

Roadmap

This document is divided into chapters that address each part of the development pro-
cess for an Imagine application:

Section 2.0 of this document describes the components of the Imagine toolset, how to
configure Microsoft Visual C++ for use in developing an Imagine application, and how
to structure the source files that compose the application.

Section 3.0 describes the Kernel C language used to write kernels.

Section 4.0 describes the StreamC language used to write stream programs.

Section 5.0 describes the | Scd kernel scheduler used to compile kernelsfor execution on
Imagine.

Section 6.0 gives an overview of the run-time tools: the simulators and the profile com-
piler.

Section 7.0 describes the IDebug functional simulator used in conjunction with
Microsoft Visual C++ to debug the application.

Section 8.0 describes the I Sim cycle-accurate simulator used to execute the application.
Section 9.0 described the 1 Stream profile compiler built in to the Imagine simulators.

Section 10.0 describes the SchedViz application visualizer used to analyze and optimize
the application.

Section 11.0 deal s with advanced topics, including dealing with kernelsthat fail register
alocation and using | Stream with Verilog.

Each section concludes with one step in a short exercise that develops a simple applica-
tion for Imagine.

May 11, 2002 7

Setup

2.0

Setup

2.1

Toolset Files

To ready an Imagine for toolset for use, unpack (or check out from sourcesafe) the
toolset into a“working” directory. The resulting directory structure is shown below. The
directory im_apps contains all imagine applications. Paths used within this document
assume that any new application islocated in its own directory withinim_apps. The
tools directory contains the source files for the Imagine tools, each in its own directory.

wor ki ng
i m.apps
<one directory for each application>
tool s
i scd
isim
i simdl
i si mhost dl
i si nexe
bl ank_headers
SchedVi z

The Imagine toolset contains the essential fileslisted in Table 1. These files are located
at the path given in Table 1.

To ready the toolset for use, do the following (in this order):

1. Settheenvironment variable“iscd preproc” equal to afully qualified path to thefile
CL.EXE, e.g. “C:\Program Files\Microsoft Visual Studio\VC98\Bin\cl.exe”, and
“iscd_includes’ to afully qualified path to the blank_headers directory, e.g.
“c:\working\tool s\isim\isimexe\blank_headers’.

2. Add the tools\isim\isimexe\Rel ease, tool s\isim\isimexe\Debug, and
tools\iscd\Rel ease directories to your system path.

3. Add pathsto bison.exe and flex.exe in the Visual C++ GUI under “Tools->Options-
>Directories->Executable Files.” These executables can be obtained from the Cyg-
win distribution (www.cygwin.com). Note: these executables are only necessary for
tool development -- application devel opers need not provide thesefiles.

4. Open the project tools\tools.dsw in Visual C++ and build the Release and Debug
versions of ismexe.exe and the Release version of iscd.exe.

May 11, 2002

Setup

TABLE 1.

Essential Files

File Description L ocation(s)
gold8.md Machine description for the Imagine im_apps
architecture, used by kernel scheduler

and simulator

main.cpp The standard main file required for all toolsism/isimexe
Imagine applications
*.hpp Header files required for developing tools/

Imagine applications toolslisim/
toolg/isim/isimdll
tools/isim/isimhostdll

*.hpp Blank version of some header filesused | tools/isim/isimexe/

by preprocessor for kernel scheduler blank_headers
iscd.exe The kernel scheduler (1Scd) tools/iscd/Release
isimhost.dl| The combined functional simulator, tools/isim/isimexe/Release
. cycle-accurate simulator, and profiling .
ismcore.dll compiler (IDebug, 1Sim, and | Stream). toolsisim/isimexe/Release
ismhost.lib Librariesrequired to link applicationfor | tools/isim
. . use with above dlls .
ismcore.lib toolslism
issimhostdbg.dll Debug versions of the above. tools/ism/isimexe/Debug
issimcoredbg.dl| tools/isim/isimexe/Debug
issmhostdbg.lib toolsism
issmcoredbg.lib toolsism
SchedViz.exe The schedule visualizer, written in and tools/SchedViz/SchedViz.exe

compiled using Visual Basic

May 11, 2002

Setup

2.2

Creating a project

To develop an Imagine application, create anew “Win 32 Console Application” project
in Visual Studio located in a new directory within the im_apps directory. Then, change
the following project settings:
1. C/C++, General, Preprocessor Definitions:
add _USRDLL_IMP_USRDLL2_IMP
2. CJ/C++, Preprocessor, Additional Include Directories
add ..\..\tools\isim\isimdll, ..\..\tools\isim\isimhostdll, ..\..\tools\isim
3. Link, Input, Additional library path:
add ..\..\tools\ism
4. Link, Input, Object/Library Modules:
add isimcore.lib isimhost.lib for “ Release”
add isimcoredbg.lib isimhostdbg.lib for “ Debug”
5. Copy main.cpp from tools\isim\isimexe into the project

10

May 11, 2002

Setup

2.3

File Structure

Imagine applications consist of the files described in Table 2. The file main.cpp is

always the same. The arbitrary C++ files that do not involve KernelC or StreamC have

no restrictions. The StreamC and Kernel C files all have specific formats, including a
REQUIRED ordering of header files, described in the remainder of this section. The
simulator script files are introduced in Section 6.1 and described fully in Section 8.0.

TABLE 2. File Types
File Description
main.cpp The standard main file included in the tool set
* _ke.cpp A KernelC file containing a kernel
*_sc.cpp A StreamC file containing a stream program, or func-
tions that contain StreamC
*_ke.hpp A shared header file containing kernel declarations and
record definitions shared by both KernelC and StreamC
files
*.hpp, *.cpp Arbitrary C++ files that contain portions of the applica-
tion that do not involve KernelC or StreamC
*.sim simulator script files used to execute the application on
asimulator
The Imagine tools also use/produce several related file types, the most important of
which are summarized in the following table:.
TABLE 3. Related File Types

File Description

*.md Machine description file, describes the Imagine architec-
ture

*.uc Human readable microcode format, output of kernel
scheduler

* raw/* lis Binary microcode formats used to verify decode logic
and for actual hardware (.lisis a specia binary format
for use with verilog)

*.pro Profile recorded for profiling compiler

*Viz Schedule visualizer file, used to visualize an iscd sched-

ule, istream resource alocation, or isim run

May 11, 2002

11

Setup

2.3.1 Shared header file format (*_kc.hpp)

Thesefiles contain record definitions and kernel declarations. Records are essentially
structures defined using Imagine types. Kernel declarations are essentially function dec-
larations for kernels. Each kernel declaration isfollowed by two special lines containing
the KERNELDECL and KERNELCALL macros. The file must end by including the
"idb_undeftypes.hpp" header file.

Thefileformat is as follows:

#i ncl ude "i db_types. hpp"
#i ncl ude "i db_deftypes. hpp”

record recordName

{
type TfieldName;

b

kernel kernelName(type parameterName, ...);
KERNELDECL (kernelName) ;

#defi ne kernelName KERNELCALL(kernelName);

#i ncl ude "i db_undeftypes. hpp"

12

May 11, 2002

Setup

232

2.3.3

KernelC file format (*_kc.cpp)

These files contain one or more kernels (one kernel per file is recommended). Thefile
must begin with the order of headers shown. Each kernel must be preceded by a KER-
NELDEF macro that takes the name of the kernel and the file name (and path) of the .uc
file produced by the kernel scheduler as arguments.

#i ncl ude “i db_kernel c. hpp”
#i ncl ude “shar edHeader Fi | eNane” ;

#i ncl ude “i db_kernel c2. hpp”

KERNELDEF(kernelName, “kernelUCFileName”);
kernel kernelName(type parameterName, ...)

{

/'l kernel C code here
}

StreamC file format (*_sc.cpp)

Thesefiles contain amix of C++ and StreamC. Each file must begin with the order of
headers shown. At least one of these files must contain aspecia function called astream
program. A stream program is somewhat like the “main” function of a stream applica
tion, though each stream program has a unique name and there may be more than one. A
stream program can have only two arguments, the special argument
STREAM_SCHEDULER, and a String called args. It must be preceded by the
STREAMPROG macro with the name of the stream program as an argument. Any func-
tion that uses StreamC must have a STREAM_SCHEDUL ER argument, and be passed
the special variable “scd” as shown.

#i ncl ude “idb_streanc. hpp”
#i ncl ude “sharedHeader Fi | eNane”;

STREAMPROE streamProgramName) ;

voi d streamProgramName(STREAM SCHEDULER, String args)

{
/]l C++ or StreanC code here

otherFunctionName(scd, ...);

}
voi d otherFunctionName (STREAM SCHEDULER, ...)

{

/1l nore C++ or StreanC code here

May 11, 2002 13

Setup

2.4

Exercise, Step 1

Thisisthefirst step in creating a simple Imagine application. Do the following:

1. Ready the toolset for use a described in Section 2.1.

2. Start Visual C++ and create a“Win32 Console Application” project called “test” ina
directory within “im_apps” called “test” as described in Section 2.2.

3. Add thefile main.cpp to the project.
4. Add the new (blank) filestest_kc.cpp, test_sc.cpp, and test_kc.hpp

14

May 11, 2002

KernelC Language Specification

3.0

KernelC Language Specification

3.1

311

The KernelC languageisto be used for programming kernels to be run on the arithmetic
clustersin Imagine. The language uses a C-like expression syntax that can be handled
by the Imagine kernel scheduler, which includes enough expressive power that pro-
grammers do not need to manage the hardware resources.

Types

Kernel C uses data types to reduce the number of operators, as operators are overloaded
based on type, and to enable type checking.

Basic Types

Table 4 lists the currently supported basic types.

TABLE 4.

3.1.2

Basic Types

(U)INT 32-bit (un)signed integer

(U)HALF2 2 packed 16-bit (un)signed half words

(U)BYTE4 4 packed 8-hit (un)signed bytes

FLOAT |EEE format single precision, 32-bit floating point

cc 4-bit boolean

In the operation descriptionsin Section 3.6, integer operators are assumed to operate on
both signed and unsigned types unless otherwise specified.

Record Types

User-defined record types are also supported. Records are used to combine basic types
for programming convenience and concise transfers using communication or streams.
The record type declaration is as follows:

record name {
type name;

h
Where type can be any basic type or previously defined record type. Once arecord type

isdefined in afile, it can be used as anew type. The“.” operator is used to access the
fields of arecord for individual use.

May 11, 2002 15

KernelC Language Specification

3.13

Type Qualifiers
Type qualifiers modify atype for a special purpose. The type qualifier syntax is:
type_qualifier <type>

Table 5 lists the type quaifiers' syntax and their meanings.

TABLE 5.

Quialifiers

(C)ISTREAM (Conditional) input stream composed of the qualified type

(C)OSTREAM (Conditional) output stream composed of the qualified type

uc Microcontroller variable of the qualified type

DOUBLE Two concatenated instances of the qualified type

ARRAY Array of the qualified type (allocated in the scratchpad)

EXPAND Similar to Array (allocated in the LRF)

Type qualifiers cannot be combined, applied to the basic type cc, or applied to record
fields. Only the stream (istream, cistream, ostream, costream) qualifiers can be applied
to record types.

The (c)ISTREAM and (C)OSTREAM qualifiers specify input and output streams (series of
elements anal ogous to vectors) composed of the qualified type. Values are sequentially
read from or written to a stream using special operators. A new value is read from/writ-
ten to a conditional stream only if a specified condition is true in the reading/writing
cluster. The stream qualifiers can only be used for kernel parameters (see below).

The uc qualifier specifiesthat avariable islocated in the microcontroller registers.
Thereisonly one instantiation of these registers, unlike the registers contained within
the clusters. A uc variable can only be read or written in akernel using acommunica
tion operation (e.g. commclperm described in Equation 3.6.33).

The DouBLE qualifier specifies avariable consisting of two instances of the base type
concatenated together. A double variable, consisting of two variables, x and v, can also
be constructed via the following syntax:

HI_LO(X, Y)

The ARRAY qualifier and the EXPAND qualifier are used to specify an array of elements
of the base type. The only difference isthat while the former gets allocated in the
scratchpad, the later is allocated in the local register files. The size of the array or
expand is specified in parentheses after the name of the array, for example:

ARRAY<INT> foo(10);

16

May 11, 2002

KernelC Language Specification

3.14

3.15

3.2

3.3

EXPAND<INT> foo(10);

The PERSISTENT_ARRAY qualifier is also used to specify an array elements, but the cre-
ated array persistsin asingle scratchpad location for the duration of akernel. The order
of allocations depends only on the order of the persistent array declarationsin akernel.
By declaring the same persistent arrays in the same order in multiple kernels, this quali-
fier allows multiple kernelsto maintain persistent datain the scratchpad, such that one
kernel can write some data to the array, and the next kernel can read/and or change that
data, and so on.

Preprocessor Directives
Standard C preprocessor directive are supported.
Comments

KernelC supports both C and C++ style comments. The “//” identifier signifies that all
other text to the end of the lineis acomment. The“/*” and “*/" identifiers signify the
start and end, respectively, of a potentially multiline comment.

Kernels

A Kernel isessentialy afunction that operates on streams. Kernels are defined using
KernelC. Unlike normal functions, kernels cannot be nested. The basic structure of a
kernel is asfollows:

kernel name (parameter_type[&] name, ...)
{

}

body

Parameter type may be any valid type. If a stream qualifier is not used as part of the
type, it must be followed by an &. The kernel body may be composed of arbitrary vari-
able declarations, control flow, and operations. In practice, akernel usually has one or
more input and output stream parameters and consists of someinitial and final code sur-
rounding a central loop which iterates over the input streams and produces the output
streams.

Variable Declarations
Variable declaration syntax is as follows:
type name [= initial value];

where typeis any valid type (excepting stream qualifiers).

May 11, 2002 17

KernelC Language Specification

331

3.4

3.4.1

3.4.2

3.4.3

Initial Values

If typeisamicrocontroller (uc) qualified basic type an initial constant value may be
specified, which will be stored in the microcode word as an immediate, for example:

UC<UBYTE4> VAL = 0x01020304;

For basic types, initial values may be any valid expression. Therefore, the following two
expressions are equivalent:

INTVAL=a+ b-3;
and

INT VAL;
VAL= a+ b-3;

Control Flow
All KernelC control flow isin the form of loops. All loops check the looping condition
before theloop is entered, and after every loop iteration thereafter. There are no condi-

tional branch instructions. There are three kinds of loops available:

Count Loops

In thisform of looping, the loop is repeated until a counter (which must be of type
UC<INT>), which is post-decremented once for each iteration, becomes zero. Syntax is:

loop_count(counter) { loop body }
Stream Loops

In this form of looping, the loop continues until an input stream (a parameter qualified
by (c)isTrREAM) hastransferred all of its datato the clusters. This ensures that the loop
body will be executed for al of the elements of input stream. Syntax:

loop_stream(input_stream) { loop body }
Conditional Loops

In thisform of 1ooping, the loop continues until some combination of valuesis achieved
inacc variable. Syntax:

loop_while_any(loopcc) { loop body }
loop_while_all(loopcc) { loop body }

loop_until_any(loopcc) { 1oop body }

18

May 11, 2002

KernelC Language Specification

3.4.4

3.5

loop_until_all(loopcc) { loop body }

The combination in each case should be obvious, e.g. loop_while_any executes |oop
body while loopcc istruein any cluster.

Loop Optimization

The scheduler supports the unroLL hint for al loops. Right before the open brace of any
loop, the hint unroLL(n) can be placed to tell the scheduler to unroll the loop body n
times. For count loops, it isimportant to adjust the loop counter accordingly, as each
iteration will now actually execute the loop body n times.

The scheduler also supports the PiPELINE hint to modulo software pipeline any non-
nested loop. Software pipelining is atechnique in which aloop is divided into n stages
and different stages of n iterations are executed at once. Modul o software pipelining is
an algorithm for producing a software pipelined loop that relies on determining the
shortest possible schedule length for the loop, called the minimum iteration interval or
minll, then attempting to construct a software pipelined loop with that length. If the
attempt fails, an attempt is made to construct aloop of length minll + 1, and so on until
avalid iteration interval (loop length) is found.

To use modulo software pipelining, the hint PiPELINE(Startll) is placed just before the
open brace. If startll is 1 or less than the minimum iteration interval, the search for a
valid iteration interval begins with the minimum iteration interval, otherwise it begins
with startll.

Thisform of pipelining isfor kernels and should not be confused with the software
pipelining described in Section 9.5, which is for stream programs and completely sepa-
rate.

Inline Functions and Methods

KernelC and the Imagine stream processor do not support kernel function calls. How-
ever, for the convenience of programmers, it is useful to use function semanticsin defin-
ing kernels. Functions are cleaner than macros in that they have scope, are more
modular, and are easier to debug. Functions allow better analysis of the impact of new
functions to the Imagine instruction set. Record member functions also have the advan-
tage of transparent access to record members. Like macros, these functions are all
inlined when invoked, but still maintain function semantics. Repeating that, since it's
the most important idea here: Kernel C functions, as defined in this document, are
inlined when invoked.

We support two kinds of functions:

- Record member functions, with semantics identical to a class/structure member func-
tionin C++;

May 11, 2002 19

KernelC Language Specification

351

- Global standalone functions, with semantics identical to aregular function definition
and call in C++.

Functions can take an arbitrary number of arguments. These arguments can be either
Imagine native data types like float and int, or they can be records. Arguments can be
passed by value or by reference. Return values from functions can also be Imagine
native datatypes or records.

Examples
record xyz {
float x, vy, z;
float norm() {
return fsqgrt(x*x + y*y + z*z)

}

The"norm" function is a member of the xyz class. It isinvoked as

Xyz v;
float f = v.norm);

Functions can return variables or the results of operations.

voi d scal e(float s) {
X =X%*s, y=y*s, z=2z%s
}

void normalize() {
scale(1.0 / norm());
}

which can be invoked as

v.normalize();

Asin normalize() above, functions can call other functions which have aready been
defined.

Prototypes are permitted for member functions and are necessary in cases such as the
one below:

record xyz {

float x, vy, z;

voi d AddToMe(xyz v2)
b

inline void xyz:: AddToMe(xyz v2) {
X V2.X + X
y v2.y +v;
z v2.z + z;

}

which isinvoked as

Xyz va, Vvb;
va. AddToMe(vhb)

20

May 11, 2002

KernelC Language Specification

35.2

The reason prototypes are necessary in this case is because AddToM e uses a datatype
(xyz) that is not yet fully defined at the time the prototype is needed.

Global standalone functions (not members of any record) are also permitted:

inline void dampBetween(float & f, float clanp_lo, float clanp_hi) {
f = select(itocc(f <= clanp_hi)
select(itocc(f >= clanp_lo), f, clanp_lo)
clanmp_hi);
}

inline float C anpBetween2(float f, float clanp_lo, float clanp_hi) {
return select(itocc(f <= clanp_hi),
select(itocc(f >= clanp_lo), f, clanp_lo)
clanmp_hi);
}

which isinvoked as

float f, f2;

float flo = 0.0

float fhi = 1.0;

Cl anpBet ween(f, flo, fhi); /1 f is passed by reference
f2 = danpBetween2(f2, flo, fhi); /1l f2 is passed by val ue

You are also permitted to prototype global standalone functions. Thisisnot necessary in
KernelC, but is necessary for idebug, because idebug requires the functions to be
defined once per executable, but Kernel C needs them to be defined in each kernel. To
gracefully handle this difficulty, put the prototypes in the headers, link the correspond-
ing .cpp files into the debug environment project, and for Kernel C only, conditionally
include the .cpp filesinto each kernel (probably easiest by including them at the bottom
of the headers).

/* at the end of standal one_functions. hpp (for instance): */
#i fdef _I MAG NE_BU LD

#i ncl ude "standal one_functi ons. cpp"

#endi f

Note that both the global standalone and externally defined member functions have the
"inline" keyword. This keyword is not mandatory but it is intended to remind the pro-
grammer that these functions will be directly inlined and are not real function calls.

Limitations

The space of supported functionsisnot nearly as great as C++. It isimportant to keep in
mind that the Kernel C parser is single pass, which reduces the breadth of capabilities of
KernelC functions.

In particular:

- Function support has not been tested as extensively as other KernelC features.

- Circular function calls (where &) calls b() and b() calls a()) are not possible. In fact,
circular record usage where something defined as part of record x uses record y and

May 11, 2002 21

KernelC Language Specification

3.6

something defined as part of record y uses record x is also not possible. The specific
restriction in Kernel C isthat things must be defined before they're used, whereasin C++
it is often sufficient to only declare things before they're used. (In other words, thisisn't
alowed:

inline int foo();
inline int bar() { return foo(); }

instead you'd have to define foo first, not just prototypeit.)
- Recursion is not permitted.
- There is no concept of constructors (or destructors).

- Function argument testing between prototype and definition is nonexistent. Return
value checking is also primitive, so avoid prototyping a function with one set of argu-
ments then defining it with another. (In this case, the definition set will be accepted and
the prototype set will be thrown away.)

- Streams are not permitted as function arguments.

- There's no capability for overloading a function name: i.e. you can't have both foo(int
a) and foo(float b) and expect them to be properly resolved.

Most of the capabilities of functions can be achieved by judicious use of macros, so if
your use of functions causes problems, falling back to macrosis the preferred solution.

Operations

All operations are overloaded based on variable type. For the INT types, the operations
perform full 32-bit integer operations, if applicable. For the FLoAT type, the operations
perform full 32-bit floating point operations including alignment and normalization
unless otherwise specified. For the HALF2 type, the operations perform two completely
separate operations on each of the two 16-bit half words, if applicable. For the ByTE4
type, the operations perform four completely separate operations on each of the four 8-
bit bytes.

No implicit type conversion is performed, i.e. an INT cannot be added to aByTE4 or even
an UNSIGNED INT. However, explicit type casting (with no conversion) is allowed
between integer types. Other type conversion can only be performed with an explicit
conversion operation (i.e. IToF, ccTol, €tc.).

Unless otherwise specified all operations which take inputs of type INT, HALF2, and/or
BYTE4 can a so operate on their unsigned counterparts.

Refer to the Imagine Instruction Set Architecture for more specific detail s on the seman-
tics of each operation.

22

May 11, 2002

KernelC Language Specification

3.6.1

3.6.2

3.6.3

ADD

Format X+y

Input Types INT, FLOAT, HALF2, BYTE4

Output Type ~ Mmatchesinput type

Description. Abb computes the sum of x and y based on their types. For integer and
floating point types, amodulo addition is performed. For the half word type, the bottom
half words are added together, and the 16-hit result forms the bottom half word of the
result. Independently, the top half words are added together to form the top half word of
the result. For the byte type, four independent byte-wide additions are performed to pro-
duce four independent byte-wide results to make up the full 32-bit result.

SATURATING ADD

Format addsat(x, y)

Input Types INT, HALF2, BYTE4

Output Type ~ Matchesinput type

Description. sATURATING ADD computes the sum of x and y with saturation based on
their types. For the integer type, a saturating addition is performed. For the half word
type, the bottom half words are added together with saturation, and the 16-bit result
forms the bottom half word of the result. Independently, the top half words are added
together with saturation to form the top half word of the result. For the byte type, four
independent byte-wide saturating additions are performed to produce four independent
byte-wide results to make up the full 32-bit result.

SUB

Format X-y

Input Types INT, FLOAT, HALF2, BYTE4

Output Type ~ Mmatchesinput type

Description. sus computes the difference of x and y based on their types. For integer
and floating point types, amodulo subtraction is performed. For the half word type, the
bottom half words are subtracted, and the 16-bit result forms the bottom half word of
the result. Independently, the top half words are subtracted to form the top half word of
the result. For the byte type, four independent byte-wide subtractions are performed to
produce four independent byte-wide results to make up the full 32-bit result.

May 11, 2002 23

KernelC Language Specification

3.6.4

3.6.5

3.6.6

3.6.7

SATURATING SUB

Format subsat(x, y)

Input Types INT, HALF2, BYTE4

Output Type ~ Mmatchesinput type

Description. sATURATING suB computes the difference of x and y with saturation based
on their types. For the integer type, a saturating subtraction is performed. For the half
word type, the bottom half words are subtracted with saturation, and the 16-bit result
forms the bottom half word of the result. Independently, the top half words are sub-
tracted with saturation to form the top half word of the result. For the byte type, four
independent byte-wide saturating subtractions are performed to produce four indepen-
dent byte-wide results to make up the full 32-hit result.

ABS

Format abs(x)

Input Types INT, FLOAT, HALF2, BYTE4

Output Type ~ Matchesinput type

Description. Ass computes the absolute value of x.

ABD

Format abd(x, y)

Input Types INT, HALF2, BYTE4

Output Type ~ Mmatchesinput type

Description. Aeb computes the absolute difference of x and y.

Bitwise Logical Operations (AND, OR, XOR, NOT)

Format X& Y, X|y, XNy, ~X

Input Types INT, HALF2, BYTE4

Output Type ~ Mmatchesinput type

Description. These four operations perform bitwise logical and, or, xor, and not respec-
tively. Theresult isthe same, regardless of the input type, as the operations are per-
formed on a bitwise basis. Note that if all inputs are the output of a comparison
operation (EQ, NEQ, LT, LE) then these functions are effectively normal logical operations
that respect the integer input type boundaries.

24

May 11, 2002

KernelC Language Specification

3.6.8

3.6.9

3.6.10

Comparison Operations (EQ, NEQ, LT, LE, GT, GE)

Format X==Y,XI=y, X<y, X <=y, X >y, X>=y

Input Types INT, FLOAT, HALF2, BYTE4

INT, HALF2, and BYTE4 => matches input type,

Output Type FLOAT => INT

Description. These six operations perform the comparsons for equality, inequality, less
than, less than or equal to, greater than, and greater than or equal to, respectively. For
integer and floating point inputs, the result of thistest isabitmask of al O'sor all 1's,
where all O'sindicatesfalse, and al 1'sindicates true. For the halfword and byte types,
the comparison is performed on a component by component basis, and each component
of the result will contain a bitmask of all O'sor all 1's, based on the test for that compo-
nent.

SELECT

Format select(p, X, y)

p: cc
Input Types X, ¥ INT, FLOAT, HALF2, BYTE4

Output Type ~ matchestype of inputs‘x’ and ‘y’

Description. seLecT chooses X if pistrueandy if pisfase. Both x and y must be of the
sametype. If x and y are of type HALF2 or BYTE4, then the individual components are
selected separately, using the multiple bits of the cc p.

MUL

Format X*y

Input Types INT, FLOAT, HALF2, BYTE4

Output Type ~ DOUBLE integer input type, or FLOAT

Description. muL produces the result of multiplying x and y. For integer and floating
point types, the obvious function is performed. For the halfword and byte types, multi-
plication is performed on a component by component basis and the products are packed
together into the result, with the components of the high word of the result being the
packed high halves of the multiplications, and the components of the low word of the
result being the packed low halves of the multiplications.

May 11, 2002 25

KernelC Language Specification

3.6.11

3.6.12

3.6.13

MULD

Format muld(x, y)

Input Types HALF2, BYTE4

Output Type DOUBLE INT, DOUBLE HALF2

Description. muLb produces the result of multiplying x and y. Multiplication is per-
formed on a component by component basis and the products are packed together into
the result. The difference from the muL instruction is the output word format. The high
and low halves of the result of the multiplications are stored in the same word, rather
than being split across the high and the low word. So, the result of amuLp on half words
istwo full words, with the high word being the 32-bit result from multiplying the high
half words together, and the low word being the 32-bit result from multiplying the low
half words together. For bytes, the high 16-bits of the high word of the result is the prod-
uct of the high bytes of the input words, and so on.

MULRND

Format mulrnd(x, y)

Input Types INT, HALF2, BYTE4

Output Type DOUBLE integer input type

Description. muLrRND produces the result of multiplying x and y. For integers, the high
word of the result isthe high rounded 32-bits of the 64-bit product, and the low word of
the result is the low saturated 32-bits of the 64-bit product. For the halfword and byte
types, multiplication is performed on a component by component basis and the high
rounded halves of the result are packed into the high word, and the low saturated halves
of theresult are packed into the low word. The rnpm() and satm() functions can be used
to select the appropriate result from the pousLE return value.

DIV

Format xly

Input Types INT, FLOAT, HALF2, BYTE4

Output Type ~ DOUBLE integer input type, or FLOAT

Description. piv produces the double precision result of dividing x and y. For integer
formats, a 64-bit result is produced as a 32-hit quotient and a 32-bit remainder.For the
halfword and byte types, division is performed on a component by component basis,
and the quotients of the results are packed together into the high word produced by this
instruction, while the remainders of the results are packed together into the low word
produced by the instruction.

26

May 11, 2002

KernelC Language Specification

3.6.14

3.6.15

3.6.16

3.6.17

FSQRT

Format fsart(x)

Input Types FLOAT

Output Type FLOAT

Description. FsQrT produces the floating point square root of x.

SHIFT (logical)

Format shift(x, y)

X: INT, HALF2, BYTE4

Input Types Yo INT

Output Type ~ matchestype of input ‘X’

Description. sHIFT shiftsx by y bits. If y isapositive number, x is shifted l€eft; if y is
negative, x is shifted right. For the integer types, the result is the 32-bit value resulting
from x being shifted by y. For the halfword and byte types, each component of the result
is the value obtained by shifting the corresponding component of x by y bits.

SHIFTA (arithmetic)

Format shifta(x, y)

X: INT, HALF2, BYTE4

Input Types Yo INT

Output Type ~ matchestype of input ‘X’

Description. sHiFTA shiftsx left by y bitsto theleft if y ispositive, and to theright if y is
negative. The sign of the result is maintained by shifting 1's into the upper bits of the
result on right shiftsif the input was negative. For the integer types, the result is the 32-
bit value resulting from x being shifted right by y. For the halfword and byte types, each
component of the result is the value obtained by shifting the corresponding component
of x by y bits.

ROTATE

Format rot(x, y)

X: INT, HALF2, BYTE4

Input Types Yo INT

Output Type matchestype of input ‘X’

Description. ROTATE rotates x by y bits. If y is positive then x is rotated l€eft; if y isneg-
ative then x is rotated right. For the integer types, the result is the 32-bit value resulting
from x being rotated by y. Signed integers are treated the same as unsigned integers; the

May 11, 2002 27

KernelC Language Specification

3.6.18

3.6.19

sign bit is rotated normally. For the halfword and byte types, each component of the
result isthe value obtained by rotating the corresponding component of x by y bits.

SHUFFLE

Format shuffle(x, y)

X: any integer type
Input Types y: BYTE4

output Type matches type of input ‘X’

Description. sHUrFrLE performs a byte reordering operation on the input x based on the
control information in the input y. The component bytes of the output word can be inde-
pendently selected from the input word x with the following options:

byte 0 of the input x

byte 1 of the input x

byte 2 of the input x

byte 3 of the input x

fill with msb of byte 0 of the input x

fill with msb of byte 1 of the input x

fill with msb of byte 2 of the input x

fill with msb of byte 3 of the input x

zero

© N o g~ w NP O

This operation allows avariety of functions, such as sign extend from asmaller typeto
alarger type, permute, broadcast, pack from alarger type to a smaller type, and many
others. Byte O corresponds to the low order byte, and byte 3 is the high order byte. Each
byte of the output word is selected by the corresponding control byte of the input y.

SHUFFLED

Format shuffled(x, y)

X: any integer type
Input Types y: BYTE4

Output Type DOUBLE type of input ‘X’

Description. sHUFFLED performs a byte reordering operation on the input x based on the
control information in the input y, just as sHurrLE does. The differenceis that shuffled
produces two outputs. The low nibble of each control byte controls the result of the low
output word, and the high nibble of each control byte controls the result of the high out-
put word. The control values are exactly the same as in the sHUFFLE instruction.

28

May 11, 2002

KernelC Language Specification

3.6.20

3.6.21

3.6.22

3.6.23

FTOI

Format ftoi(x)

Input Types FLOAT

Output Type INT

Description. Froi takes a 32-bit floating point number and convertsit to an integer
using truncation. If the magnitude of the floating point number istoo large to be repre-
sented as an integer, then theresult is clamped at +/- MAXINT depending upon the sign
of theinput.

FRAC

Format frac(x)

Input Types FLOAT

Output Type FLOAT

Description. Frac takes a 32-bit floating point number and returns the fraction that
would be left over if x were converted to an integer. In other words, FRAC(X) = X -
IToF(FTOI(X)).

ITOF

Format itof(x)

Input Types INT

Output Type FLOAT

Description. iTor takes a 32-bit integer and convertsit to a 32-bit floating point number.
The input cannot be unsigned.

ITOCC

Eormat assignanINTtoacc

Input Types INT, HALF2, BYTE4

Output Type CC

Description. When a variable of type cc is assigned to from a signed or unsigned inte-
ger, the low bit of each byte of the input is used to set the value of the cc variable.

May 11, 2002 29

KernelC Language Specification

3.6.24 CCTOI

Format assignacc to an INT

Input Types cc

Output Type INT

Description. When a variable of type cc isassigned to a signed or unsigned integer,
each bit of theinput is replicated to mask each byte of the output.

3.6.25 Type Cast Operators

Format type(x), Asint(y), AsFloat(z)

X: INT, HALF2, BYTE4

y: FLOAT
Input Types Z: INT, HALF2, BYTE4

Output Type type

Description. The type cast operators change the type of an integer variable to a differ-
ent integer type. No data conversion is performed. Asint(y) and AsH oat(z) can be used
to treat floats asints and ints as floats with no data conversion.

3.6.26 HI

Format hi(w)

Input Types W: DOUBLE<BASIC TYPE>

Output Type BASIC TYPE

Description. Hi returns the high word of a double type.

3.6.27 LO

Format lo(w)

Input Types ~ W: DOUBLE<BASIC TYPE>

Output Type BASIC TYPE

Description. Lo returns the low word of adouble type.

30

May 11, 2002

KernelC Language Specification

3.6.28

3.6.29

3.6.30

3.6.31

RNDM

Format rndm(w)

Input Types W: DOUBLE<HALF2 or BYTE4>

Output Type HALF2 OR BYTE4

Description. rRNDM returns the rounded multiply result of a double type that was the
result of amuLRND instruction. Thisis an aiasto the Hi instruction for greater program
readability.

SATM

Format satm(w)

Input Types ~ W: DOUBLE<HALF2 Or BYTE4>

Output Type HALF2 OR BYTE4

Description. sat™m returns the saturated multiply result of a double type that was the
result of amMuLRND instruction. Thisisan aliasto the Lo instruction for greater program
readability.

CHECK_OVF

Format check_ovf(x)

Input Types X: FLOAT

Output Type INT

Description. cHeck_ovr returnstrue if overflow has occured, false otherwise.

CHECK_UNF

Format check_unf(x)

Input Types X. FLOAT

Output Type INT

Description. cHeck _UNF returns true if underflow has occured, false otherwise.

May 11, 2002 31

KernelC Language Specification

3.6.32 COMMUCPERM

commucperm(perm, X)
Format commucperm(perm, X, srcidx, y)

perm: UC INT
X: any integer type, FLOAT
srcidx: constant

Input Types y: uc of sametypeas‘x’

Output Type Sametypeasinput ‘x’

Description. commucPerM performsintercluster communication as determined by
perm, which must be a uc variable. perm specifieswhich cluster's‘x’ input will be read
by each cluster. The least significant nibble of perm contains the source index for cluster
0, and so on up to the most significant nibble, which contains the source index for clus-
ter 7. Each source index is a number between 0 and 7, which corresponds to the source
cluster. If specified, srcidx specifies which cluster’s value of ‘x” will be stored in‘y’.

Examples:

/'l swap val ues in adjacent clusters

/1 cluster 0 gets value in cluster 1,

/1 cluster 1 gets value in cluster 0, etc.
uc<i nt> perm = 0x67452301;

X = commucperm(perm X);

/1 foo in all clusters and the uc variable uc_foo get the value of
I/ bar in cluster 3

uc<i nt> perm = 0x33333333;

foo = comucpern({perm bar, 3, uc_foo);

3.6.33 COMMCLPERM

commclperm(perm, x)
commclperm(perm, X, srcidx, z)
commclperm(perm, X, Y)

Format commclperm(perm, X, y, srcidx, z)

perm: INT

X: any integer type, FLOAT
y: uc of sametypeas‘x’
srcidx: constant

Input Types z: uc of sametypeas‘x’

Output Type Sametypeasinput ‘x’

Description. commcLPERM performs intercluster communication as determined by
perm, which cannot be a uc variable. perm specifies which cluster's‘x’ input will be
read by each cluster. Only the least significant nibble of thisvalueisused by each clus-

32

May 11, 2002

KernelC Language Specification

3.6.34

3.6.35

ter. Each source index is a number between 0 and 8, which corresponds to the source
cluster -- 8 indicates the microcontroller, or input ‘y’. If specified, ‘srcidx’ specifies
which cluster’'sdatawill be stored in‘z'. The value of ‘srcidx’ must indicate a cluster, it
cannot indicate the microcontroller (it cannot be 8).

The first two forms of commclperm duplicate the two forms of commucperm shown
above except that a uc variable is not used for the permutation. The remaining two are
illustrated by these examples:

/1 assign value of uc variable uc_bar to variable foo in all clusters
foo = commtl perm(8, x, uc_bar);

/| as above, and assign value of x in cluster 1 to uc_foo
foo = commtl perm(8, x, uc_bar, 1, uc_foo0);

INPUT

Format istr >> x;

istr: ISTREAM<TYPE>

Input Types X: TYPE

Output Type hone

Description. iNpuT reads a value from input stream ‘istr’ and storesitin‘x’. The*“>>"
operator can be cascaded to input multiple values, similar to the C++ operator>> seman-
tics.

OUTPUT

Format ostr << X;

Ostr: OSTREAM<TYPE>

Input Types X: TYPE

Output Type hone

Description. outpuT writes avalue to output stream ‘ostr’ from ‘x’. The “<<” operator
can be cascaded to output multiple values, similar to the C++ operator<< semantics.

May 11, 2002 33

KernelC Language Specification

3.6.36

3.6.37

3.6.38

CONDINPUT

Format cistr(p, ccend) >> x;

Cistr: CISTREAM<TYPE>
p: cC

Input Types ccend: cc

X: TYPE

Output Type ccend: cC

Description. conpinpuT reads avalue from input stream ‘istr’ and storesitin ‘x’. Each
cluster can evaluate the validity of the data received with the ‘ccend’ value. ‘ccend’ is
trueif ‘p’ istrue and valid data was not stored to ‘X', otherwise it isfalse. In other
words, it istrue only if data was requested but none was available. The “>>" operator
can be cascaded to input multiple values, similar to the C++ operator>> semantics, all
of which use the same predicate.

CONDOUTPUT

Format costr(p) << x;

costr: COSTREAM<TYPE>
p: CcC
Input Types X: TYPE

Output Type hone

Description. If ‘P istrue, conDouTPUT Writes a value to output stream ‘ostr’ from ‘x’.
The “<<" operator can be cascaded to output multiple values, similar to the C++ opera
tor<< semantics, al of which use the same predicate.

CONDALLINPUT

Format cistr(ALL, p) >>x;

istr: ISTREAM<TYPE>

Input Types p: CcC

Output Type X: TYPE

Description. conpALLINPUT functions like conpiNPUT except that the value of p must be
the samein al clusters; either al or no records are read from the input stream. For this
reason, it can and must be used with a normal, non-conditional input stream. Thus, it
does not have a ccend argument, but can be used in aloop_stream. Note: in the above
syntax, ALL isaliteral keyword not an argument.

May 11, 2002

KernelC Language Specification

3.6.39

3.6.40

3.6.41

3.6.42

CONDALLOUTPUT

Format costr(ALL, p) <<Xx;

costr: OSTREAM<TYPE>

Input Types p: CcC

Output Type hone

Description. conpaLLouTruT functions like conpouTPuT except that the value of p must
be the same in al clusters; either all or no records are written to the output stream. For
thisreason, it can and must be used with anormal, non-conditional output stream. Note:
in the above syntax, ALL isaliteral keyword not an argument.

FLUSH

Format flush(costr, X);

COstr: COSTREAM<TYPE>

Input Types X: TYPE

Output Type hone

Description. FLusH pads ‘costr’ to force the stream to have alength that is a multiple of
8. Thevaueof ‘X’ is used to pad the stream. FLusH must be called as the last operation
on aconditional output stream. For predictable results, the value of ‘x’ should be the
samein al clusters.

CID

Format cid();

Input Types none

Output Type INT

Description. The special function cid() can be used to obtain the cluster’s number. This
function will return a different number (0-7) for each of the eight clusters, and can be
used to perform cal culations that require knowledge of which cluster they are being
computed on. For example, in an eight cluster machine, cid() would return zero in clus-
ter zero, onein cluster one, ..., and seven in cluster seven.

UCiD

Format ucid();

Input Types none

Output Type INT

Description. The special function ucid() can be used to obtain the microcontroller’'s
index, which is normally equal to the number of clusters. Thisfunction will return a

May 11, 2002 35

KernelC Language Specification

3.6.43

number that can be used in communication permutations to address the microcontroller.
For example, in an eight cluster machine, ucid() would return eight in all clusters.

SYNCH

Format synch();

Input Types none

Output Type NONE

Description. The synch operation is never required, but it can be used enable | Stream to
reorder a kernel that uses uc parameters, which is otherwise impossible. In order for a
kernel to be reordered it needs to have the following:

* synch() if it reads any UC arguments
¢ read UC arguments, if any

e write UC arguments, if any

* synch() if it writesany UC arguments

Other code can be arranged around these stepsin any order.

36

May 11, 2002

KernelC Language Specification

3.7 Exercise, Step 2
1. Openthefile“test_kc.cpp” and add the following code:

11
#i
#i
#i

11

headers must al ways be in this order
ncl ude "idb_kernel c. hpp"

ncl ude "test_kc. hpp"

ncl ude "i db_kernel c2. hpp"

this tells StreanC where to find mcrocode

KERNELDEF(addAndSum "test/test_kc.uc");

11
11
11
11
11
11
11
11

this kernel takes two stream of integers
adds each pair of integers and

sunms all of the integers

it has the foll ow ng argunents:

, input stream of integers

, input stream of integers

, output streamof addition results
c_sum the sumof all integers

cC OoOoTY

kernel addAndSun(i streanxint> a,

i streanxint> b,
ostreanxint> c,
uc<i nt >& uc_sum

/1 read initial value of uc_suminto sum

/1 dunmmy is an unused argumnent

int sum

int dummy;

sum = comcl perm(uci d(), dunmmy, uc_sun);

/1 only keep sumin cluster O (otherw se, would be x8)
sum = sel ect (itocc(cid() == 0), sum O0);

uc<i nt> perma = 0x67452301;
uc<i nt> permb 0x44660022;
uc<i nt> permc = 0x00004444;

/1 1oop over input stream a
| oop_stream(a) {

int al, bl, ci1;

/1 read a value froma and b

a >> al;

b >> bi;

/1 add the val ues

cl = al + bi;

/1 output the result

c << cl;

/'l update sum

sum = sum + cl;

}

/] conmpute sum across all clusters
/1 adjacent clusters...

sum = sum + conmucperm(perm.a, sun;
/1 adjacent pairs of clusters...
sum = sum + conmucper m(permb, sum;
/'l adjacent "quads" of clusters ...
sum = sum + conmucperm(permc, sumn;

/!l wite the value of sumin cluster 0 into uc_sum

May 11,

2002

37

KernelC Language Specification

/1 dunmmy is an unused argurment and result
dumy = commtl per m{dumy, sum 0, uc_sum;
}

2. Openthefile“test_kc.hpp” and add the following code:

#i f ndef _TEST_KC
#define _TEST_KC

/1 header files nust be in this order
#i ncl ude "idb_types. hpp"
#i ncl ude "i db_deftypes. hpp"

/1 decl are the kernel
kernel addAndSun(i streanxint> a,
i streanxi nt> b,
ostreanxi nt> c,
uc<i nt>& uc_sumn;
/!l these are required for each kernel
KERNELDECL (addAndSun)j ;
#defi ne addAndSum KERNELCALL(addAndSun)

/1 don’t forget this line at the end!
#i ncl ude "i db_undeftypes. hpp"

#endi f

May 11, 2002

StreamC Language Specification

4.0 StreamC Language Specification
The StreamC language is used in combination with C++ for writing stream programs. It
includes definitions of stream and microcontoller variables, calling kernels, copying
streams, loading and saving data to/from streams, and transferring streams over a net-
work. StreamC also includes special annotations required to use | Stream, the profiling
compiler described in Section 9.0.
4.1 Imagine Basic Types in StreamC
Imagine basic types should be used in StreamC only to declare variables of stream types
and microcontroller (uc) qualified types. To avoid name conflicts with normal C++
basic types, Imagine basic types are distinguished by an “im_" prefix in StreamC. For
instance, the Imagine “int” basic typeis“im_int". Note: this prefix isnot required in
shared header files as defined in Section 2.3.1.
4.2 Streams
Stream variables are like pointers that refer to a sequence of data records. Stream vari-
ables are declared as follows:
im_stream <type> name;
where type is an imagine basic type or user-defined record.
4.2.1 NAMED Streams
The NAMED macro, used in a stream declaration as shown below, exposes the name of
a stream variable to the application enabling it to be used in |Sim messages, error mes-
sages, etc. It is recommended that al streams be “NAMED.”
im_stream <type> NAMED(name) = ...
4.2.2 Null Streams
Stream variables are initially null -- they do not refer to any data. Like anull pointer,
any attempt to use a null stream resultsin an error. The following method returnstrueif
astreamis not null:
x.isValid();
4.2.3 newStreamData

A stream variable can be assigned to refer to new data as follows:
X = newStreamData<type> (size, [optional] data dependence = im_fixed);

The newStreamData functional allocates storage for size records. Use of the data depen-
dence parameter is described in Section 4.9.2.

May 11, 2002 39

StreamC Language Specification

4.2.4 Simple Assighments
A stream variable can be assigned to refer to the datareferred to by another stream vari-

able using standard assignment syntax as shown below. It isimportant to note that this
does not copy any data, it merely makes both streamsrefer (or “point”) to the same data.

y =X

4.2.,5 Derivations

A stream variable can be assigned to refer to a subset of the data referred to by another
stream variable. Such a stream is said to be derived from the other stream.

The simplest derivation refersto arange. The following syntax is used to assign y to
refer to every record in x starting with start index up to but not including end index:

y = X(start index, end index, [optional] data dependence = im_fixed);

For instance:
y = x(0, 8);

assignsy to refer to records O through 7 of x.

More complex derivations can be achieved using one of three access types:

Strided access can be used to refer to every strideth record in the range, as follows:
y = X(start, end, variableLength, im_acc_stride, stride);

For instance:

y = x(0, 8, imfixed, imacc_stride, 2);
assignsy to refer to records 0, 2, 4, and 6 of x.

Bit-rever sed access refers to every record in the range, but with the bitsin the index
rearranged using four steps:

1. divide by modulus

2. reverse order of first n bitsin quotient, where n = log2(length of stream)
3. multiply bit-reversed quotient by modulus

4. add remainder of original division

Bit-reversed accessis specified as follows:

y = X(start, end, variableLength, im_acc_bit_reverse, modulus);

For instance:

y = x(0, 7, imfixed, imacc_bit_reverse, 2);

May 11, 2002

StreamC Language Specification

4.2.6

4.2.7

assignsy torefer torecords 0, 1, 4, 5, 2, 3, 6, and 7 of x (in that order).

Indexed access refers to elements constrained within the range with indices given by
the elements of a stream of unsigned integers, as follows:

y = X(start, end, im_fixed, im_acc_index, index);

For instance, if theim_stream<im_int> z refers to integers with values 5, 6, 5, 4, 2 then:

y = x(0, 7, imfixed, imacc_index, z);

assignsy to refer to elements (words) 5, 6, 5, 4, and 2 of x (in that order). Note that the
indices refer to the words and not the records in x, thus allowing indexing inside
records.

Overriding Record Size and Specifying Coordinates in Words

All such assignments also accept two additional, optional parameters:. recordSze and
coordinatesinWords.

y =X(..., [optional] recordSize = 1, [optional] coordinateslnWords = false);

recordSize (specified in words) can be used to override the default record size so that
that multiple records are treated as a single record when distributing the data to the clus-
ters. Specifying arecordSize of 3would result in cluster O of 8 clustersreceiving records
0, 1, 2, then 24, 25, 26, while cluster 1 received records 3, 4, 5, then 27, 28, 29 and so
on.

If coordinateslnWords is true, then the range start, end, stride, bit-reverse modulus, and
record size are specified in words instead of in records (the default). This could be used
to derive astream referring to one field in each record of a stream. For instance, given a
stream of 256, ten-word Foo records, a stream containing the third field could be
extracted asfollows:

/] start at word 3,

/1 end at word 256 * 10 = 2560,

I/ stride of 10 words,

/1 record length of 1 word

a = b(3, 2560, imacc_stride, 10, 1, true);

Countup Streams

The length of some streams may vary depending on the data being processed. When
alocating space for such a stream or deriving it from another stream, the data depen-
dence parameter should be set to im_countup.

X = newStreamData<type> (size, im_countup);

or

y = x (0, 8, imcountup);

May 11, 2002 41

StreamC Language Specification

4.2.8

4.3

A countup stream initially contains zero records. When written to by akernel or other
operation, the length of the stream is set to the number of records written. The maxi-
mum length isthe allocated si ze specified in the newStreamData call. The current length
of a countup stream can be determined as follows:

x. get Length();

An additional function, getSize() returns the maximum number of records the stream
could contain.

Stream Derivation Restrictions

Certain hardware specific restrictions apply to these derivations. In particular, almost all
derivations must be from sequential streams. A sequential stream is a stream with
strided access and a stride equal to the record length. Streams with strided access and a
stride other than the record length, or a bit-reversed or indexed access pattern, or coordi-
nates in words that are not evenly divisible by record length can only be derived from a
sequential stream.

Microcontroller Variables
Microcontoller variables may be declared in StreamC as follows:

im_uc<type> name;

where type is an Imagine basic type (with the “im_" prefix).

Microcontoller variables may be read and written as follows:
int i;
imuc<imint> uc_i;
uc_i =1i;// assign value of i to uc_i
i = ucRead(uc_i);// assign value of uc_i to i

Microcontroller variables are only useful in StreamC because they allow single values
to be passed as kernel arguments, for example if the kernel “sum” computes the sum of
astream of integers, it could be called asfollows:

imstreankimint> x = ...;
imuc<imint> sund X = 0;

sunm(x, suntfX);
cout << ucRead(suntfX);

42

May 11, 2002

StreamC Language Specification

4.4

44.1

4.5

Kernels

A Kernel isessentialy afunction that takes streams and microcontroller variables as
arguments. See the Kernel C documentation for information on writing kernels. Kernels
are called in StreamC just like any other function. A kernel iscalled asfollows:

kernel(argumentO, ..., argument n);
Kernel Stream Restarts

Kernels can be made to read inputs from or write outputs to a series of streams by
restarting the kernel with each additional stream asfollows:

kernel(... , restart(stream argument i), ...);
kernelRestart(i, restart(another stream));

kernelRestart(i, final stream);

In this syntax, restart indicates that a kernel argument will be restarted (any number and
combination of arguments may be restarted), and each kernel Restart specifies the
stream used to restart one argument and actually triggers the restart of that argument. A
series of restarted streams will be treated exactly the same as one large input stream by
the kernel, for example aloop_stream would loop over the recordsin all of the streams.
The kernel will not terminate until the end of the last stream and all internal state will
stay the same between streams.

For example, akernel might require ten passes over an input stream, which could be
written as;
foo(inl, ...);
for (int i =0; i <9; i++) {
kernel Restart (0, inl);
}

Copying Streams
StreamC includes a special function that copies records from one stream to another.
void streamCopy(im_istream<T1> inl, im_ostream<T2> outl);

It isimportant to note that a derived stream refersto part of another stream, whereas
streamCopy makes a copy of the records in the stream. For instance, the following two
statements are not equivalent:

/1 refer to part of A

b = a(0, 100);

/] copy part of A
streanCopy(a(0, 100), b);

May 11, 2002 43

StreamC Language Specification

4.6

4.7

Following the first statement, a change to the recordsin aa will aso change the records
in b. Following the second statement, b will still contain a copy of the old records even
if the recordsin a are changed.

Loading/Saving Streams

StreamC includes several functionsto load datato streams from binary pointers, a vec-
tor template class, or afile (see Section 6.4 for data file formats).

void streamL oadBin(void* bin, int length, im_ostream<T> out1);

void streamL oadVect(vector<Tv>& vect, im_ostream<T> outl);

void streamL oadFile(char* file, String type, String args, im_ostream<T> outl);
StreamC al so includes an additional 1oad function that replicates the recordsin afile
number-of-clusters times so that each cluster receives one copy of each record, whichis

useful for loading streams of constants.

void streamL oadFileReplicated(char *file, String type, String args, im_ostream<T>
outl);

Conversely, streamC includes severa functions to save data from streams:
void streamSaveBin(void* bin, im_istream<T> inl);

void streamSaveVect(vector<Tv>& vect, im_istream<T> inl);

void streamSaveFile(char *file, String type, String args, im_istream<T> inl);

Lastly, StreamC includes a specia function that compares data from a stream to that
saved in afile:

bool streamCompar eFile(char *file, im_istream<T> inl, float threshold, String args);
where args are typically “a’ for absolute comparison (difference is measured by sub-
tracting one value from the other) or “r” for relative comparison (difference is measured

by subtracting one value from the other then dividing by their sum), and threshold isthe
maximum absolute or relative difference.

Network Operations

StreamC includes network operations to transfer data between processors using the fol-
lowing functions:

void streamSend(StreamRoute route, im_istream<T> inl);

May 11, 2002

StreamC Language Specification

void streamReceive(StreamRoute route, im_istream<T> inl);

4.7.1 Stream Routes
A StreamRoute variable defines a route between two imagine processors, using the syn-
tax shown below. All StreamRoute variables must be declared as global variables (out-
side of afunction).
SreamRoute name(int source, int dest, char* route);
where source and dest are the indices of the source and destination processors and route
isastring of in which each digit indicates a hop according to the following table:
TABLE 6.
Digit First hop direction Subsequent hop direction
0 north gect
1 south right
2 west left
3 east straight
4 loopback --
4.7.2 Network Stream Restarts

Network operations may be restarted the manner shown below:

streamSend or streamReceive(route, restar t(stream));
streamSend or streamReceive(route, restart(another stream));

streamSend or streamReceive(route, final stream);

Note that all restarts for a particular transfer must use the same StreamRoute. Network
transfers intended to occur in parallel should not use the same StreamRoute.

For example, two streams produced by different kernels could be sent over the network
and received as one stream using the following, which could be useful for accumulating
the results without tying up SRF space on the sending processor:

/1 on sendi ng processor
net wor kSend(r1, restart(a));

net wor kSend(r1, b);

/1 on receiving processor
net wor kRecei ve(r1, ab);

May 11, 2002 45

StreamC Language Specification

4.8

4.9

4.9.1

Controlling Multiple Imagines with One Stream Program

A single stream program can be used to control multiple Imagines with the same host
processor. Such a stream program must be preceded by a STREAMPROG_MULTIPLE
statement instead of a STREAMPROG statement. STREAMPROG_MULTIPLE takes
two arguments, the name of the function that implements the stream program and the
number of Imaginesit controls, for instance:

STREAMPROG_MULTIPLE(testProgram, 2)

In such a stream program, all profile and data-dependent control-flow blocks apply to
all Imagines controlled by the stream program, but all StreamC operations (e.g. kernels)
are executed only on the current Imagine. The current Imagine isinitially that with
index 0, and can be set using the following syntax:

setl magine(index of new current Imagine);
The current Imagineis set back to 0 upon entering or leaving a profiled section of code.

For good performance, operations sent to the two Imagines should aternate unless one
takes significantly more time than the other, and calls to getL ength and ucRead should
occur aslate as possible. For any network transfers between Imagines controlled by the
same stream program, the streamSend must precede the streamReceive.

For agood example of a stream program that uses multiple imagines, see the
im_apps\sortmulti_sc application (not reprinted here for brevity).

Profiling Annotations

| Stream, the tool used to compile StreamC, is a profile compiler. Rather than compile
the source code directly, it compiles a profile of the program made during arun using
the functional simulator or naive compilation. This profile is essentially arecording of
the sequence of stream operations performed by the program. If the sequence of stream
operations (or any of their arguments) varies depending on the data being processed,
this variation must be communicated to the profile compiler using special annotations.
These annotations fall into two main categories, data dependence annotations to
streams, which are used to note that some aspect of a stream such asits start or end var-
ies depending on the data being processed, and data dependent control flow, if-state-
ments or loops that depend on the data being processed. These annotations are described
in the following sections. These annotations are not required in order to use IDebug, so
initial development can be done without them, but they are required for use of | Stream
(and hence 1Sim).

Designating which part of the application to profile

| Stream only profiles a section of the application enclosed as follows:

profil e(profile name) {

}

May 11, 2002

StreamC Language Specification

49.2

where | Stream appends various suffixes to the profile name (which must be the start of a
valid file name, including the path, if any) to produce file names for data, visualization,
and information files related to the profile (see Section 9.0 for more detail on those
files).

It is possible to produce multiple profiles for a stream program under varying parame-
ters (e.g. different profiles for an image-processing program applied to different image
sizes) by simply giving each such profile a different name.

Data-dependent stream derivations

The data dependence argument in a newStreamData call or stream derivation isused to
mark countup streams, or stream derivations where the start index or end index depend
on the data being processed (within a profile, these are the only parts of stream deriva-
tion that are allowed to vary). The data dependence argument can be some combination
of the following flags OR’ ed together:

TABLE 7.

Flag Meaning

im_fixed (default), stream is not data dependent, cannot be combined with
other flags

im_countup is a countup stream, see Section 4.2.7

im_var_size start index is zero, end index is data-dependent, no data past end

im_var_pos start and end index are data-dependent

im_var_align asim_var_pos, in addition start index times record sizeis aways
evenly divisible by 32

im_var_incr asim_var_pos, in addition successive accesses will always access

incrementing, digoint portions of alarger stream

Sripmining flags:

im_strip_none These flags are binary OR'’ ed into the data-dependence parameter to

provide extrainformation about the stripmining behavior of the

im_strip_ignore stream. For details on their usage, see Section 9.4.

Special hardware flags:

im_cacheable Used for hardware experiments, see Section 11.4

The following examplesiillustrate the use of these flags:

im_fixed: A fixed stream is used whenever the start and end are always the same e.g.:

May 11, 2002 47

StreamC Language Specification

4.9.3

i m strean<kFoo> out _data = newStreanDat a<Foo>(100);

i m strean<Foo> out _firstHal fEven = out_data(0, 50, imfixed,
imacc_stride, 2);

nyKernel (in, out_firstHalfEven);

im_countup: A countup, also called variable length, stream is used whenever the end
varies depending the number of records produced by a stream operation. Note: all coun-
tup streams are also inherently variable size.

i m strean<Foo> out = newStreanDat a<Foo>(naxFoo, i m countup);
nyKernel (in, out);
recordsl nQut = out.getlLength();

im_var_size: A variable size stream is used whenever the end varies, most often to con-
tain the output of kernel that consumes a stream with a data-dependent number of
records and produces the same number of records, e.g.:

i m strean<kFoo> out _data = newStreanDat a<Foo>(naxFoo) ;
i m streanm<Foo> out = out_data(0, in.getLength(), imuvar_size);
nyKernel (in, out);

| Stream assumes that there is no valid data past the end of such a stream.

im_var_pos,im_var_align, im_var_incr: A variable position stream is used whenever
the start or end varies, most often to iterate over parts of a stream or do some sort of
lookup into a particular stream. It isimportant to note that im_var_pos does not place
any restrictions on the size of the stream since both the start and end can vary. In case
where the stream size is bounded, copying the stream into a fixed size stream is recom-
mended. For instance:

i m strean<Foo> out = newStreanDat a<Foo>(maxFoo) ;
for _VARIABLE(i = 0; i < in.getLength(); i+= 32) {
i m strean<kFoo> outlter = newStreanDat a<Foo>(32, i mcountup);
streanCopy(out (i, max(i + 32, in.getLength()),
imvar_pos | imvar_align | imvar_incr), outlter);
nyKernel (in, outlter);

}

In the case of this example, theim_var_align flag can be used because the start is
alwaysdivisible by 32. Thisflag isimportant for good performance because it allows
multiple variable position accesses to use the same buffer in the SRF. Further, the
im_var_incr flag can be used because the definition always refers to incrementing, dis-
joint sections of alarger stream. Thisflag isimportant because it avoids dependencies
between successive accesses.

Data-dependent control flow

Data-dependent control flow occurs any time a branch depends on the data being pro-
cessed. Only data-dependent if-statements and loops are supported. If aloop iteratesa
large number of times (more than ten), it is recommended that it be marked as a data-
dependent loop even if it is not data-dependent since this will reduce the size of the pro-
file and make compiling it significantly faster. Data-dependent if-statements within a
profile must be annotated as follows (else is not supported):

May 11, 2002

StreamC Language Specification

i f VAR ABLE(...) {
o

Data-dependent loops must be annotated as follows:

while_VARIABLE (...) {
| ooplter();
}
or
for _VARIABLE (...) {
| ooplter();
} ..

The looplter call has two optional parameters that can be used can be used to handle
data-dependent loops that differ from iteration to iteration

| ooplter([optional] preOrPost = false, [optional] newPeriod = true);

preOrPost can be set to true for one or more iterations at the start and/or end of the loop
to “peel” those iterations off of the loop (for instance, if they execute special opera-
tions). newPeriod can be set to true only every n iterations to unroll the loop n times
(for instance, if the loop toggles between two sets of streams). For, example, the follow-
ing code executes aloop with the first and | ast two iterations peeled, unrolled three
times, to implement three rotating row buffers with padding:

int peeledStart = 2;
int peel edEnd = 2;
int unrolledTinmes = 3;

for _VARIABLE (int i = 0; i < nunmLoops; i++) {
looplter(i < peeledStart || i >= numLoops - peel edEnd,
((i - peeledStart) %unroll edTinmes) == 0);
tenp = buffer2;
buffer2 = bufferil;
bufferl buf f er 0;
buffer0 t enp;
if (i <2 || i >= nunLoops - 2) {
pr oducePaddi ng(buf fer0);
} else {
streanCopy(inlmage(width * (i - 2), width * (i - 1), imvar_pos),
buf fer0);

}
if (i >=2) {
processData(buffer0, bufferl, buffer2, output);
streanCopy(out put, outlmage(width * (i - 2), width * (i - 1),
i mvar_pos);

May 11, 2002 49

StreamC Language Specification

49.4

Restrictions on newStreamData

Within a profile the size argument to newStreamData must be a constant, and one new-
StreamData call cannot be used to allocate multiple chunks of streamData used at the
same time. For example, the following is not legal within a profile:

i m streanxFoo> y = newStreanDat a(x. get Length());
i m streankFoo> z[10];
for _VARIABLE(int i =0; ...) {

z[i] = newStreanData(100);

}

In addition, a stream that refers to data allocated using newStreamData within a profile
may not be assigned to a stream variable from outside the profile. For example, the fol-
lowing isnot legal:

i m streanxFoo> a;

profile(...) {
a = newstr eanDat a<Foo>(100) ;

50

May 11, 2002

StreamC Language Specification

4.10 Exercise, Step 3

1. Open the file “test_sc.cpp” and add the following code:

#i ncl ude "i db_streant. hpp"
#i ncl ude "test_kc. hpp"

/1 this defines the function "testProgrant
/] as a stream program
STREAMPROE(t est Program ;

/1 this streamprogramis a sinple exanple
/1 that calls the addAndSum kernel twi ce
/1 all stream programs nust have only these argunents
voi d testProgran(STREAM SCHEDULER, String args)
{
[/ print the argunments (otherw se unused)
cout << args << endl;

// declare two streams of 32 integers
/1 note that these are streans of "imint"
/1 the Inmagine integer type not "int"
i mstreanxi mint> NAMED(sl) =
newSt r eanDat a<i m i nt >(32);
i mstreanki mint> NAMED(s2) =
newsSt r eanDat a<i m_ i nt >(32) ;

/1 initialize the input streamfroman array

int data[32];

for (int i =0; i <32; i++) {
data[i] =1i;

}

streanLoadBi n(data, s1);

/1 declare a mcrocontroller variable
i muc<i mint> uc_sum= 0;

/1l profile this portion of the application
profile("testProgrant) {

/'l declare a stream of 32 integers
i mstreanki mint> NAMVED(tenp) =
newsSt r eanDat a<i m i nt >(32);

/1 call the addAndSum kernel twi ce

addAndSum(s1, s1, t enp, uc_sunj;

addAndSunm(sl, tenp, s2, uc_sum;
}

/1 save the output and display it

streanBSaveBi n(data, s2);

for (int i =0; i <32; i++) {
cout << dataf[i] << " ";

cout << endl;
cout << "sum =" << ucRead(uc_sun) << endl;

May 11, 2002

StreamC Language Specification

52

May 11, 2002

IScd, the Kernel Scheduler

5.0

IScd, the Kernel Scheduler

51

5.2

5.3

This section describes how to use I Scd to compile kernels for execution on the Imagine
processor. | Scd must be used to compile al kernels before using the cycle-accurate sim-
ulator, and in order to use the functional simulator to create a profile. However, it isrec-
ommended that the application first be debugged using the functional simulator in non-
profiling mode as described in Section 7.1.

Optimizations

There are two key optimizations that should be used in the scheduling process. First,
almost all loops should be software pipelined as described in Section 3.4.4. Many of the
termsintroduced in that section are used in this section. Second, Scheduling can be
repeated multiple times using different random seeds to perturb the heuristics used in
the process, in order to find a better schedule. By default, random seeds are not used.
They are controlled by the -r option (which tries arange of random seeds) and -rs option
(which uses a specific random seed) described below in Section 5.3. In general, schedul-
ing akernel that does achieve the best possible schedule length with 10 random seeds
may improve schedule length by one or two cycles.

Input Files

Thekernel scheduler takes one or more KernelC files (_kc.cpp) asinput. Each such file
can contain one or more kernels, written using KernelC as described in Section 3.0.

OBSOLETE: Some older applicationsinclude .i filesinstead of _kc.cpp files. The
present kernel scheduler uses a preprocessor to produce .i filesfrom _kc.cpp files, but it
can also handle this type of file as adirect input.

The kernel scheduler always takes one machine description (.md) file as an input that

describes the target architecture. If binary microcodeis adesired output, it also takes an
opcode encoding file (JDO?) as an input. These file formats are documented el sewhere.

Command Line
The kernel scheduler has the following basic command line:

iscd -m <machine description file> <global options> <kernel file 1> <local options
for kernel file 1> ... <kernel file n> <local options for kernel file n>

Which compiles al of the kernelsin kernel file 1 through n for the target architecture
described in the machine description file. The following is atypical command line for
compiling the file test_kc.cpp:

iscd -m gold8.md test/test_kc.cpp
The kernel scheduler accepts the command line options shown in Table 8. Some options

are preceded by [n], indicating that appending n to the start of the option turnsit off.
Some options have one or more arguments, denoted as “<argument name>". Options

May 11, 2002 53

IScd, the Kernel Scheduler

can be used as either global options, which are specified before any kernel and affect al
kernelsor aslocal options, which are specified after akernel and affect only that kernel.
Some options can be only global or local, specified by “G” or “L” in the “Use” column.

TABLE 8. IScd Command Line Options

Option | Use ‘ Description

Required options:

-m<.mdfile> G machine description file name, default is gold8.md

Input options:

-e<file> G opcode encoding file name used to generate raw microcode

-ne L suppress raw ucode generation for afile

-k <n> L schedule nth kernel only in file with multiple kernels, indexed
from O

-pre<command | G preprocess each C++ file using the command enclosed between -

line> -pre_end pre and -pre_end, the default is:

-pre %iscd_preproc% /1 %iscd_includes% /D
" IMAGINE_BUILD" -pre_end

-[n]syn G check the syntax of the kernel files only, do not schedule them,
default = false
-[nJup <dir> G only schedule the kernel file for which there is not an up-to-date

corresponding object file in object dir, default = false

Output file options:

-0 <name> L override the actua file name so that all output files are named by
appending a suffix to name

-od <dir> G write al output filesto specified directory

-[n]sum <file> - append summary line to text file showing schedule lengths of all
blocks, default istrue with file set to “ summary.txt”

-uc <type> G set raw ucode output type, either “issim” for use with the cycle
accurate simulator or “rtl” for use with the verilog simulator,
defaultis“rtl”

-[nlv - generate SchedViz file, default istrue

Optimization options:

-[n]cons - use conservative software pipelining which can help performance
for some kernels with many loop carried variables, default is false

-r <n><s> - schedule kernel repeatedly with n random seeds used to perturb
heuristics, starting with seed s, and output the best schedule

54 May 11, 2002

IScd, the Kernel Scheduler

TABLE 8.

IScd Command Line Options

Option Use | Description

-rf <n> - conserve registers using the nth of three levels: level 1 triesto load
bal ance registers between the two register files attached to each
functional unitsinputs, level 2 triesto load balance the register
files attached to different functional units, level 3 actualy rejects
scheduling operations on heavily loaded functional units

-rs<n> - run with nth random seed

-b<lIl> sets first pipelined block to start with 11

-b<n><I1> sets nth (indexed from O) pipelined block to start with 11

Information display options:

-[n]cd

show which operations are eliminated by copy propagation and
dead code elimination, default istrue

-[n]ops - print operations list to stdout, default is false

-[n]postops - print operations list after optimizations to stdout, default is false

-[n]scopes - print scopes list to stdout, default isfalse

-[n]t - show scheduling pass titles such as “COPY PROPIGATION”,
default istrue

-[n]vars - print variable list to stdout, default isfalse

Rarely used options:

-file <file> - include contents of text file in command line

-io <mode> - OBSOLETE: use an alternate input/output mode

-mp <p> - minimize copy operations by randomly rejecting p% of routes that
could be completed only with copy operation(s)

-lat <r><w> - add extra cycles of latency to all operations that read from aregis-

<i> ter file, writeto aregister file, or are stream inputs as given by inte-

gersr, w, and i, respectively

-opt <n> - specia purpose optimizations, not for general use

-p <n> - set maximum number of copy operations used to complete aroute,
can be set lower to decrease run time with worse performance and
loss of completion guarantee, or higher for architecturesin which
more than two copies are required to move values from one regis-
ter file to another, default is 2

-S <method> - OBSOLETE: use aternate scheduling method such as list schedul-
ing

-stat <n> - schedules kernel n times, where for ith schedule a maximum of i

input or output operations can occur on acycle

May 11, 2002

55

IScd, the Kernel Scheduler

5.4 Command Line Output

Thekernel scheduler displayswhich scheduling passit is executing, aprogressindicator
when actually scheduling operations, and other important information directly to the
command line. For example, when scheduling the example file test_kc.cpp it displays:

Starting scheduler in working directory: D:\working\imapps

Parsi ng machi ne description file :
Preprocessing programfile:

gol d8. nd
D: \wor ki ng\i m apps\test\test_kc.cpp

% scd_preproc% /1 "% scd_i ncludes% /D "_I MAG NE_BUI LD" /P D:\work-
ing\imapps\test\test_kc.cpp
M crosoft (R) 32-bit C C++ Optim zing Conpiler Version 12.00.8168 for 80x86

Copyright (C) Mcrosoft Corp 1984-1998. All

test_kc.cpp

Parsing program file: D:\working\imapps\test\test_kc.i

kkkkkkkkkkkkkkhkkkhkhkhkkhkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok kk k%

Schedul i ng microassenbly file:

BASI C BLOCKS:
DATA TRANSFERS:

1" WARNING No wite reaches read of: dummy !!!
inputs: hw_nctrl #i d dunmy uc_sum out puts:

for: line:
sum

28 COVMUCDATA

1" WARNING No wite reaches read of: dummy !!!

for: line:
COPY PROPAGATI ON:
DEAD CCDE ELI M NATI ON:

54 COVMUCDATA

line: 19 | NI T_COSTATE
line: 18 INIT_CI STATE
line: 17 INIT_CI STATE

COPY PROPAGATI ON:

DEAD CODE ELI M NATI ON:
INI' T FEASI BLE FUS:
CONSTRUCT DAG

I NI TI ALI ZE REG STERS:
COVMPUTE SLACK:
SCHEDULE:

*¥**%x BLOCK: 1 ops: 7 (seed: 0 m

*xxxx Bl OCK: O ops: 9 (seed: O mi

*xxxx Bl OCK: 2 ops: 8 (seed: O mi

COWPACT BLOCK:

bl ock: 0 best: 5 achieved: 7
bl ock: 1 best: 6 achieved: 6
bl ock: 2 best: 11 achieved: 11

ALLOCATE REG STERS:

/1 maxi mum regi ster allocation:

/1 idx: 0 1 2 3
/1 max: 256 32 2 16
/'l use: 0 4 2 1

// idx: 18 19 20 21
// max: 16 16 16 16
/] use: 1 1 1 1

/1 rf/functional unit mapping:
: 1. -1:

/1 0: O :
/1 5. 3: ADDERO 6:

// 10: 8: ADDER1 11:

/1 15:
/1 20:
/1 25:

13:
18:
23:

4 5
16 16
2 2

22 23
16 1
1 0

inputs: outputs: jb
inputs: outputs: jb_
inputs: outputs: jb
n/cur 1l: 0/-1a)
n/cur 11: 0/-1a)
n/cur 1l: 0/-1a)
6 7 8 9 10
16 16 16 16 16
2 2 1 2 2
24 25 26 27 28
1 1 1 1 1
0 0 0 0 0
2: -1 MCO 3
7: 5: ADDER2 8
12: 10: MULTIO 13
17: 15: COW 0 18
22: 20: VALIDO 23
27: 25 INOUT4 28

inputs: dummy sum outputs:

11

rights reserved.

D: \wor ki ng\i m apps\test\test_kc.i

dunmmy

12 13 14
32 32 32

1 1

SP_SC0
DI VI DO
MULTI 1
SP_SCD
I NOUTO
I NOUT5

1

15
32

12:

22:
27:

(1)
(2)

(5)

(6)

(7

(8)
(10)

(11)

(12)

16 17
16 16
1 4

Ccow 0
ADDERO
MJLTI O
SP_SCo
I NOUT1
I NOUT6

56

May 11, 2002

IScd, the Kernel Scheduler

/1 30: 28: I NOUT7

*** Current best seed is: O (13)
*** Best random seed: 0 *** (14)
Generating mcrocode file: D:\working\imapps\test\test_kc.uc for m croassenbly
file: D:\working\imapps\test\test_kc.i (15)

Generating viz file: D:\working\imapps\test\test_kc.viz for programfile:
D: \wor ki ng\i m apps\test\test_kc.i

Each of the numbered components of this output is explained in more detail below:
1. The working directory and machine description used:

Starting scheduler in working directory: D:\working\imapps
Parsi ng machi ne description file : gol d8. nd

2. The preprocessor command line (note default uses environment variables):

Preprocessing programfile: D:\working\imapps\test\test_kc.cpp

% scd_preproc% /1 "% scd_i ncludes% /D "_I MAG NE_BUI LD" /P D:\ wor k-
ing\imapps\test\test_kc.cpp

M crosoft (R) 32-bit C C++ Optim zing Conpiler Version 12.00.8168 for 80x86
Copyright (C) Mcrosoft Corp 1984-1998. All rights reserved.

test _kc. cpp

3. Thekernel scheduler parser. KernelC syntax errors are displayed here:

Parsing programfile: D:\working\imapps\test\test_kc.i

4. The kernel scheduler passes. Unless the -nt option is used, the title of each passis
displayed, for example “BASIC BLOCKS’:

R

Schedul i ng microassenbly file: D:\working\imapps\test\test_kc.i
BASI C BLOCKS:

5. Thedatatransfer pass. Unreached variable warnings are displayed here. In the exam-
ple, onlines 28 and 56 of test_kc.cpp, ‘dummy’ isonly used as adummy argument
so it is never written.

DATA TRANSFERS:
1"l WARNING No write reaches read of: dummy !!!
for: line: 28 COVMUCDATA inputs: hw_nctrl #i d dunmy uc_sum out puts:
sum
1" WARNING No wite reaches read of: dummy !!!
for: line: 56 COVMUCDATA inputs: dummy sum outputs: dummy

6. Theiterative copy propagation and dead code elimination passes. Unless the -ncd
option is used, the operations which removed due to copy propagation or dead code
elimination are displayed here:

COPY PROPAGATI ON:
DEAD CODE ELI M NATI ON:

line: 19 IN T_CdSTATE inputs: outputs: jb_c#2
line: 18 |INIT_CI STATE inputs: outputs: jb_b#1
line: 17 I NI T_Cl STATE inputs: outputs: jb_a#0

COPY PROPAGATI ON:
DEAD CODE ELI M NATI ON:

7. More scheduler passes, which do not produce messages:

INI'T FEASI BLE FUS:
CONSTRUCT DAG

I NI TI ALI ZE REGQ STERS:
COWUTE SLACK:

May 11, 2002 57

IScd, the Kernel Scheduler

The actual scheduling pass. If multiple random seeds are used, this pass and all later
passes are repeated for each seed:

SCHEDULE:

***%x BLOCK: 1 ops: 7 (seed: O min/cur Il: 0/-1a)

The scheduling header for a basic block, showing the basic block number, the num-
ber of operationsin the basic block, the random seed used, the minimum and current
iteration interval in the case of software pipelining, and an “a’ or “c” indicating
aggressive (default) or conservative (using -cons option) software pipelining:

***%x BLOCK: 1 ops: 7 (seed: O min/cur Il: 0/-1a)

10. The scheduling progress for ablock, consisting of “.” representing a scheduled oper-

11.

12

ation, “p” representing a a scheduler induced copy operation, or “x”, indicating that
aparticular operation placement was abandoned due to excessive computation:

The progress aboveisfor avery simple basic block containing seven operations. The
progress below is for amore complex basic block, showing software pipelining fail-
ing for a particular iteration interval. It displays zero or more “limit operations,”
which particularly restrict placement of the current operation due to software pipe-
lining restrictions, and the current operation. Scheduling then resumes with an itera-
tion interval one higher.

***%x BLOCK: 1 ops: 128 (seed: 5 min/cur |l: 32/34a)

............................ T o P
e PP P Peo XXXX. ot p. p. .

Limt op: line: 146 COVMMJUCDATA inputs: srcAcur A id outputs: Aid instr: 7
Limt op: line: 147 COVMUCDATA inputs: srcBcur B.id outputs: B.id instr: 11

SWP failure: line: 117 |1LE32 inputs: Aid B.id outputs: tnp#63765

In rare cases, the scheduler may need to backtrack to a previous operation, possibly
in an earlier basic block, and rescheduleit and al later operations, which it indicates
asfollows:

***%x BLOCK: 13 ops: 17 (seed: O min/cur |l: 0/-1a)
backt racki ng. . .

**xxx Bl OCK: 11 ops: 35 (seed: O min/cur Il: 0/-1a)

The compact block pass, which eliminates any empty cycles and displays the best
possible (critical path length or minimum iteration interval) and achieved schedule
length for each basic block:

COWPACT BLOCK:
bl ock: 0 best: 5 achieved: 7
bl ock: 1 best: 6 achieved: 6
bl ock: 2 best: 11 achieved: 11

. Theregister allocation pass, which displays the maximum and used number of regis-

tersin each register file by index, then the mapping of indicesto register file names.
For instance, register file 17 at the end of the first set of lines contains 16 registers, 4

58

May 11, 2002

IScd, the Kernel Scheduler

55

of which were used. It mapsto the register file attached to the communication unit’s
input port 0 as shown by 17: 15: COMM_0. (The 15 indicates hardware index 15,
and is used for tools debugging -- it can be ignored.)

ALLCCATE REG STERS (new):

/1 maxi mum regi ster allocation:

/1 idx: o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/1 max: 256 32 2 16 16 16 16 16 16 16 16 16 32 32 32 32 16 16
/] use: 0 4 2 1 2 2 2 2 1 2 2 2 1 1 1 1 1 4

/1l idx: 18 19 20 21 22 23 24 25 26 27 28 29 30
/] max: 16 16 16 16 16 1 1 1 1 1 1 1 1
/'l use: 1 1 1 1 1 0 o0 0 0 0 0 0 0

/1 rf/functional unit mapping:

/1 0: 0: SP_SC0 1. -1: cowmo 2: -1: MO 3: 1: SP.SC0 4: 2: COWDO
/1 5. 3: ADDERO 6: 4: ADDERL 7: 5. ADDER2 8: 6: DIVIDO 9: 7: ADDERO
// 10: 8: ADDER1L 11: 9: ADDER2 12: 10: MULTIO 13: 11: MULTI1 14: 12: MILTIO
/] 15: 13: MULTI1 16: 14: DIVIDO 17: 15: COWMO0 18: 16: SP_SCO 19: 17: SP_SCO
/1 20: 18: JUKEBO 21: 19: JUKEBO 22: 20: VALIDO 23: 21: INOUTO 24: 22: |NOUT1
/1 25: 23: INOUT2 26: 24: INOUT3 27: 25: INOUT4 28: 26: INOUTS5 29: 27: | NOUT6
/1 30: 28: | NOUT7

Register allocation is not guaranteed to succeed. In the case of aregister allocation
failure, the kernel scheduler displays the overflowing register file and the variable
that will not fit, for example:

REG STER ALLOCATI ON FAI LURE! Unable to allocate register in RF: UNITRF_1_0
(index: 8) for variable: x

The kernel scheduler does not generate any output if it fails register allocation for all
random seeds. For more information on dealing with aregister allocation failure, see
Section 11.1.

13. The best random seed found so far that passes register allocation, displayed after
attempting to schedule the kernel with each random seed:

*** Current best seed is: O

14. The best random seed found overal:

*** Best random seed: 0 ***

15. The output files generated:

Generating microcode file: D:\working\imapps\test\test_kc.uc for mcroassenbly
file: D:\working\imapps\test\test_kc.i

Generating viz file: D:\working\imapps\test\test_kc.viz for programfile:

D: \ wor ki ng\'i m apps\test\test_kc.i

Output Files

The kernel scheduler produces output files for each kernel it schedules. These files are
placed in the same directory as the input file that contains the kernel unless the -od
option isused. If the input file only contains one kernel, the output files for that kernel
have the same name as the input file with different suffixes unless the -o option is used.
If theinput file contains more than one kernel, the output files for each kernel are named

May 11, 2002 59

IScd, the Kernel Scheduler

by appending an underscore, the name of the specific kernel, and adifferent suffix to the
name of the input file.

The kernel scheduler produces up to four output files for each kernel. First, it always
generates a human-readable microcode (.uc) file. Thisfileis parsed and executed by
cycle accurate simulator, and some information is extracted from it by the functional
simulator for profiling. Second, unless the -nviz option is used it generates a schedule
visualizer (.viz) file that is used by the SchedViz tool to show agraphical representation
of the scheduled kernel. Third, if the -e option is used, it generates a binary microcode
(.raw) file and a special binary microcode file directly readable by Verilog (.lis) file.

5.6 Exercise, Step 4
1. Open acommand prompt window and change to the im_apps directory
2. Schedulethe kernel in test_kc.cpp using the following command line:
iscd -m gold8.md test\test_kc.cpp
Thiswill generate the filestest_kc.uc and test_kc.viz.

60

May 11, 2002

Run-time Tools Introduction

6.0

Run-time Tools Introduction

6.1

6.2

A stream application is linked at run time to two dynamic link libraries (.dlls), ism-
host.dll and isim.dIl. These libraries contain the run-time tools for Imagine: afunctional
simulator called IDebug, a cycle-accurate simulator called 1Sim, and a profile compiler
for StreamC called 1Stream, each of which is described in detail in one of the following
three chapters. This section provides a brief introduction to using these tools.

Simulator Script Files

Using the functional simulator or the cycle-accurate simulator requires a simulator
script (.sim) file. These files can contain awide variety of commands. Simulator script
files are described in detail in Section 8.0. However, the following simulator script file
suffices for most purposes:

t im

p/it/im

run streamprogram ../hp "arguments"

go

Where streamprogram is the name of a stream program, the special function that serves
asthe “main” function of a stream application as described in Section 2.3.3, and argu-
mentsis an arbitrary, non-null string passed to that function as the second of its two
arguments.

Using a Simulator

Both simulators are available by simply executing the stream application with particular
arguments. The basic command lineis as follows:

stream application -m <machine description file> -s <simulator script file> [-idb]
<options>

Which simulates the stream application on the architecture described in the machine
description file using the specified simulator script. If the command line includes the
option -idb, the application is executed using IDebug, the functional simulator. Other-
wiseg, it is executed using 1 Sim, the cycle-accurate simulator.

The following isaminima command line for executing the example application using
IDebug:

test/Rel ease/test.exe -m gold8.md -s test/test.sim -idb

The same command line without the -idb option executes the application using ISim:
test/Rel ease/test.exe -m gold8.md -s test/test.sim

Itisrecommended that the -fht (fast host transfers) command line option always be used

when running ISim, since it eliminates simulation of tedious host-lmagine data trans-
fers.

May 11, 2002 61

Run-time Tools Introduction

6.3

Thefollowing is the typical progression of application development with the recom-
mended command line options:

For debugging with IDebug use Debug build with -idb -np

For building a profile with IDebug use Release build with -idb -arp
For executing on |Sim use Release build with -fht

Command line options

The run time tools have several command line options, described in the following table:

TABLE 9. Run-time Tools Command Line Options
Option Description
Required options:
-m<.mdfile> machine description file name, default is gold8.md
-s<.smfile> simulator script file name
| Debug options:
-idb runin iDebug mode
-np disable profiling
ISim options:
-h print usage information
-S specify file to read commands from
-m specify machine description language file
-n do not print debugging messages
-e specify op encodingsfile
-d (obsolete) specify base name for implicit -s, -m
-i (obsolete) specify interactive mode override .sim file when using -d option
-q terminate simulator on completion of .sim file
-0 suspend memory system during kernel execution
-lu simulate loading of kernels from off-chip memory
-lu+file don't simulate loading of kernels from memory
-lu+tsim simulate loading of kernels from memory from .lisfiles
-lu+red simulate loading of kernels viathe host processor using .raw and
.ucfiles
62 May 11, 2002

Run-time Tools Introduction

TABLE 9.

6.4

Run-time Tools Command Line Options

Option Description

-fht enable fast (not cycle-accurate) datatransfers between the host and
Imagine, recommended

-ds enable .sim fileloads and savesfor StreamC to support verilog, see
Section 11.3 for more details

| Stream options:

-arp always rebuild profiles regardless of whether source file contain-
ing the profile statement has changed (recommend after any
changes to other files)

-nrp never rebuild profiles even if the source file containing the profile
statement has changed (dangerous, use only when, for instance you
have just changed a comment)

-nostrip do not suggest stream sizes for stripmining as described in Section
9.4, may make profile generation faster

-stripsp <n> make stripmining suggestions such that largest n% of countup or
variable size/position streams recorded in the profile overflow

-pg specify specially tagged source file containing aloop to be soft-
ware pipelined as described in Section 9.5

-pot specify # specially tagged source files, where the first contains a
loop to be software pipelined and successive files contain tagged
functions called from within that loop

-ptags show tagsin pipelined sourcefile

-sdb <root> enable IDebug vs. |Sim stream comparison, see tool devel opers
<model> documentation for more information

<mode2>

Data File Formats
The Imagine simulators support a variety of data file formats. UJK/IDO (graphics)?

Imagine datafilesin text format (used by streamL oadFile, streamCompareFile and
streamSaveFile) are specified in the following manner. The files consist of one or more
regions. Each region startswith a:, followed by aT asthe first two characters on the
line, and then awhitespace (: T).

Then the datatype is specified asin the following string:
T F

where F isasingle character data format specifier (identical to those used in the C
library function scanf). For decimal integer data, use d; for hexidecimal integer data, use
X; for floating-point data, use E.

May 11, 2002 63

Run-time Tools Introduction

Next, the datais specified, with each word separated by whitespace (either spaces, tabs,
or newlines). For example, an integer stream with 8 data values from 0-7 would be spec-
ified as;

data file with 8 integers, 0-7
T d
0123
4567

Note:

1. Commentsin datafiles are preceded by a# and are terminated by a newline.

2. Thefileisread row-wise, i.efirst we read the entries (going from left to right) in
the the first row and then the second row and so on.

To specify a datafile with mixed datatypes (for example, arecord with one integer

and one floating point member), use multiple : T datatype specifiers:
data file with 8 records (int/float)

:Td

1

T E

100.0

T d

2

:Td

200.0

Also, an optional number can come right after the formatting character (no interven-
ing space), to indicate that the number of bytes required to represent the numbers.
Thuswe use a'2' for 16-bit and a'4' for 8-bit numbers. stream operations on files
check each 8-hit or 16-bit values to the correct length.

Mixing thefile's datatype and the datatype of the input record is not recommended.
However, if thisis done, the datais processed in the following way:

1. The datais parsed using the scanf operator with the specified : T directive asthe
format argument to scanf.

2. The datais written into an Imagine data word, which isaunion of afloat and an
int.

a. If that directive specifies afloating point format, the datais written as a float.

b. If that directive does not specify afloating point format, the datais written asan
int.

3. When that dataisthen used asan int or afloat (or anint or afloat in arecord), it
appears asit is declared.
Asan example, if the datafileis

:TE

123...
and that data is read into a stream of ints, the value "1" will be written as a floating-
point value 1.0 into the Imagine data word. When the stream of intsis actually used,
that floating-point 1.0 will be treated as an int: 0x3f800000.

Users who write data as one format and then use it as another format for computa-
tion or for saving to fileswill likely be surprised at the results.

May 11, 2002

Run-time Tools Introduction

6.5 Example, part 5
1. Create atext file called test/test.sim that contains the following:

t im

p/it/im

run testProgram../hp "no argunents"
go

May 11, 2002

65

IDebug, the Functional Simulator

7.0

IDebug, the Functional Simulator

7.1

IDebug isafunctional simulator built into isimhost.dll and isimcore.dll. It includes a set
of classes and functions that allow the direct execution of a stream application without
simulated or actual Imagine hardware. It can be used in conjunction with a debugger
such asthat built into Visual C++ to debug a stream application, or to generate a profile
for I Stream. 1Debug can be used for debugging without scheduled kernels aslong asthe
-np (no profiling) command line option is used.

NOTE: Since the kernels are being used with Visua C++ support, and not 1Scd, they
are not parsed and henceunr ol | (n) isignored. Thiswill be amatter of concern when
you usel oop_count (| en) . Theloop will always behave asif it has not been
unrolled.

Using IDebug with a debugger

Using adebugger on a stream application simulated with IDebug is much like debug-
ging any other application. The application must be compiled asa“debug” build. All of
the conventional debugging tools can be used: breakpoints, single-stepping instructions,
watches, stack traces, etc.

Under I Debug kernelswork like normal functions, with two important exceptions. First,
kernels are not called directly, and may be called in their own threads. Single-stepping
into akernel islaborious, and it is better to simply place a breakpoint at the start of a
kernel and execute to that point. Second, all basic datatypeswithin akernel (such asint)
are actually classes with a property called clust_vals. Clust_valsisan array of eight val-
ues, the value of that variable in each of the eight clusters of Imagine.

For instance, the following screen shot shows Visual C++ debugger being used to debug
the exampl e stream application. A breakpoint is set on the line that computes the value
of cinside the kernel test. The program has been single-stepped past thisinstruction,
and the watchesin lower right window show the values of the variables a, b, an c in the
eight clusters.

It isimportant to note that |Debug allows the full range of C++ syntax to be used for
printing debugging information, validating results, etc. Such code should always be
enclosedin “#ifndef _IMAGINE_BUILD" / “#endif” preprocessor directives. Thiscode
isonly executed under |Debug, and is not compiled by the kernel scheduler. For
instance, the value of a inside the example kernel could be displayed to stdout using the
following syntax:

#i f ndef _I MAG NE_BUI LD
for (int i =0; i <8; i++) {
cout << a.clust_vals[i] << * 7;
}
cout << endl;
#endi f

66

May 11, 2002

IDebug, the Functional Simulator

bl ot Yeee frawt Proec: Gebug Jeok Wndea Hel =l =]
o E | B I3 2 (IR | Gy e Ae_per_ote - | g (1 SR v R o=l = R)
[lkckak) || llglabl rarkani =l g addtindSium x| -
i 5 ANt sy
T T 2 xun = Imn::p-nu:u::dn:l dusmy. uvs_zus] EI
= Flﬁl [[11Y < loap avar input EhrEss &
=8 S Pl loop_stismmis] |
¥ int ml. hl. =1
=] man.cop resd & valus Erom & snd b
2] twst_kpcpn s 3 al
2] twst_sit oppe b bl
SE=1 F A7 wdd thm valuax
-4 Hod Fies - ol = a1 + bl
W1ttt e
- put tha
R s Pl =) a et ol
m L Z7 updata Eum
sim = ok + 0l -
= v |] Flainns - ;lJ
HIdr addandEunis_istreswiin_intr 1... 7. lk_istreancis_intr 1. 1. ik |(H[H | [=
A [I'.Ibq.:lufu:hldu ar lcl:'nlltll:ll:nu'lljl linm 433 + &0 b'-.ll.lll K El-:l] 3
[DetugCohsduler: kextialCall (i Lins 992 | =
S\manichudulns fniesfacn. ketnsltalliaznaldzg {.. .}, Fesnslicg Bl =lust_valx Dl DallE 795
tesiFyogran [StresnSchedulerInteriace & ... 3. Stying {...}) line | Lk]]
idb_thrmad_fn(vwcad # Qxldcdi¥al) line 117 + 495 Eytex [i] i
thyeadstaries(void = On003911290) line 212 + 13 byies 121 2
FERHELIZ1 77md7Sdal) f =
[E}] 3
[4] [
151 [
%] &
171 ¥
H bl i)
£l clust_valz DD DmiE 7B
7]]
[1] 1
[2] H
[EN] 3
[4] [
5] £
[%] [
171 ¥
el ...}
B cluxt_valx DacDialE FEE
1] [
[1] 2
[2] [
[EN] £
4] [
5] 10
%] 1z
[?1 jEL E
|f L 20| || [T wewten o v st wares
3|[Casded xysbalz Ear 'D:wwarking-toalr-azis-izissse-labog-izinbackdbg 411" =]
SlLosdsd TG WWIHRT mazsroapponp d11° . oo Batching symbolio intormation fomnd
|| JLawded T m3iswmEverk.dll’, ra matching mvabalic infarmstian Equrd
Losdsd "G wHIHHT mFr-AOVAFIZE DLL . o matchind symbolic inforssticn fovred]
Lasdsd ‘C:wUIHHT eyetas3iwrpered d11°, na sstching mysbalic infarsstion Ecund
|| IR a0, e P i Filacd p, Fired in Fiac 3] 4 |] W
Ao LnTr.colld 1=

7.2 Exercise, part 6

1. UselDebug to explorethefunctionality of the test program. Place abreakpoint at the
start of the stream program, then compile and execute the application with the com-
mand line;
test/Debug/test.exe -m gold8.md -stest/test.sim -idb -np

Place a breakpoint as shown in the above figure. Run to that breakpoint. Examine
the values of a, b, and c. Single step. Examine them again.

May 11, 2002 67

ISim, the cycle accurate simulator

8.0 ISim, the cycle accurate simulator

ISim isthe cycle accurate simulator used to gather performance results. The remainder
of the section will discuss how to use the simulator command line interface, and how to
debug applications as well as extract useful statistics.

8.1 ISim Semantics
usage: issm <options>
Command-line options can be found in Section 6.3.

8.2 ISim Commands:

These commands can be called from the command line interface of 1Sim.

Command Shortcut | Description

assert check that a variable has a specified value
Format: assert <var>"<val>"

The assert command is used to ensure that the variable <var> has
the specified value <val>. If so, the assert command has no effect.
If not, the assert command prints an informative error message.

debug set the current debug printing mode
Format: debug <mode>

The debug command sets the amount of debug printing desired.
<mode> is one of the valid debug printing modes (off, on, log,

etc.)
Modes:
off: do not print any spurious information
on: print information about the various states of pieces
of the hardware to the screen
log: sameas"on", but also store the output in a buffer
so that it can be displayed later using printlog or
writelog

display d display the value of a signal, module, or state variable
Format: display <object>

The display command displays the specified signal, module, or
state variable.

68 May 11, 2002

ISim, the cycle accurate simulator

dump

dump a range of a memory to afile

Format: dump <type> <object> "<filename>" <start> <length>
""<arguments>"

The dump command sends the range of memory <object> starting
at <start> and continuing for <length> elements to the file named
<filename>. The <type> parameter should be a string describing
the data type (txt, bin, etc.). The <arguments> parameter is differ-
ent for each <type> (and may be omitted for some types). For
"txt", <arguments> should be a single character specifying the for-
mat in which the data should be written, using the C language
printf '%' format printing codes.

go

Sep the simulator until the program completes
Format: go [<n>]

Go will step the simulator until either ctrl-c istyped by the user, or
the host interface signal s that the current macrocode program is
complete. The current cycleis printed every <n> cycles. <n>
defaults to 10,000 if not specified.

help

print help information
Format: help [<command>]

Used by itself, help shows alist of available commands with a
brief description of each. Help for a specific command provides
more in depth information

include

include command file
Format: include "<filename>"

The include command is useful for running a bunch of commands
stored in afile either interactively or within another file. All of the
commands in the file named <filename> will be exectuted before
the next command in the current file or at the prompt. Theisim
filename suffix convention for include filesis".sim".

printlog

prints the specified log to the screen
Format: printlog "<log_name>"

The printlog command can be used to display the "debug" or
"error" log to the screen, so that it can be reviewed. (<log_name>
must be "debug" or "error".)

prefix

set the variable name prefix
Format: prefix [<string>]

The prefix command sets a string which will be prepended to all
variable names. If there are no arguments, the prefix is displayed.
The prefix can be cleared by setting it to "".

quit

terminates the simulator program
Format: quit
Terminates the simulator program.

May 11, 2002

69

ISim, the cycle accurate simulator

read

read a file into a range of a memory

Format: read <type> <object> "<filename>" <start> "<argu-
ments>"

The read command reads afile into arange of memory <object>
starting at <start> and continuing for the length of thefile. <type>
specifies the type of file (txt, bin, etc.). The <arguments> parame-
ter is different for each <type> (and may be omitted for some
types, such as "txt").

run

run an application
Format: run <streamprogram> <host object> ["<args>"]

The run command |oads a streamprogram to be run. <streampro-
gram> is the name of aregistered streamprogram (see Section
2.3.3). <host object> must be aHost_Processor object. <args> are
optional arguments that will be passed directly to the streampro-
gram.

set the value of a signal or state variable
Format: set <var>"<val>"

The set command sets the signal or state variable <var>to the
value <val>. <va>isinterpreted differently for each type of vari-
able.

show

show all visible symbols with the current or given prefix
Format: show [<path>]

Shows al visible symbols at agiven level in the hierarchy. If no
argument is given, the current prefix is used as the root. Other-
wise, the given path is used to construct the root. Symbolsending
with a'/' are not terminal symbols, they are another level of symbol
path names - they can be seen by calling "show" with the extended
path.

step

steps the simulator one or more cycles
Format: step [[until] <n> [<m>]]

The step command steps the simulator <n> cycles. The defaultis
to step one cycle if <n>isnot specified. The current cycleis
printed every <m> cycles. <m> defaultsto 10,000 if not specified.
If "until" is specified, the simulator is stepped until cycle <n>
instead of stepping <n> cycles.

test

sets up the given test configuration
Format: test <test_name>

The test command runs predefined test routines. The mapping
from <test_name> to functions can be found in test.hpp.

70

May 11, 2002

ISim, the cycle accurate simulator

vemp compare an internal vector to the contents of a file
Format: vemp <object> "<filename>" <start> [<threshold>]

The vemp command provides an internal interface to the vector
compare program. It compares the vector starting at <start> in
<object> to the vector contained in the file named <filename>.
The number of elements compared is determined by the number of
elementsin thefile. If this causes the simulator to read past the
end of <object>, an error occurs. <threshold> sets the allowable
relative difference between elementsin the vector and elementsin
thefile; if omitted, <threshold> defaultsto 0.

writelog writes the specified log to the specified file
Format: writelog "<log_name>" "<file_name>"

The writelog command can be used to write out the "debug"” or
"error" log to afile for later perusal. (<log_name> must be
"debug" or "error"

8.3 Debugging

‘debug_info’ allows the programmer to look at the register state within isim, the Imag-
ine simulator. (Note: the ‘*-n" command line option to |Sim must not be used if debug-
ging information is required.) Debug_info isamodule and can be viewed just like any
other module, using the "d" (display) command in isim. There are two types of
debug_info modules. Each cluster has a debug_info module of its own that stores regis-
ter state in that module. The cluster array also has an "umbrella' module that has point-
ersto each of the cluster modules. The two modules have identical semantics and
calling acommand from the umbrella module simply calls the same command on each
of the cluster modules. However, the "#watch" family of commands should only be
called on the umbrella module; don't call it on individual cluster modules.

The two module typeslivein /it/im/clust_array/debug_info (the umbrella module) and /
it/im/clust_array/clusterX/debug_info (the cluster modules).

These are string arguments to debug_info; i.e.

isim> d ./clust_array/debug_info "string"

The valid strings are bel ow (and error checking is spotty, so watch
it):

/*

* "#all": Print out all values in RF, even hardwi red
ones.

* "#vars": Print out all values in RF, except hardwired
ones.

* "#regs": Print out all values in RF, except hardwired
ones.

* "#wat ch varnanme": Wat ch the variabl e named var nanme

* (i.e. print out each tinme the var is witten)

* "#unwat ch varname": Stop watching the variabl e named varnane

*

"#wat ch": Print out all watched varnanes

May 11, 2002 71

ISim, the cycle accurate simulator

8.4

8.4.1

* "varname": Print out all vars that have that varnane

S & Print out all values in RFrf (rf is a nunber)

*'"rf oreg": Print out value in RFrf[reg] (rf and reg are
nunber s)

*/

There are 2 kinds of printing:
#vars printsin var alphabetical order, starting with var name;

#regs printsin numerical order by regfile number (then reg number).

If you provide no argument it will do "#vars' by default. Printing "rf reg" will print the
value of the register even if that value is no longer alive, although the variable name
info will be lost.

Statistics

Statistics on 1Sim runs can be gathered using a variety of “stats’ modules. These mod-
ules have asimilar structure to debug_info; displaying them shows the statistics that the
module has compiled. (Note: the ‘-n’ command line option to ISim must not be used if
statistics are required.)

Four statistics modules are currently supported: clusters/functional units, the microcon-
troller, the SRF, and the memory system. As an example, the .sim file usually used to
gather simulation statisticsis:

di spl ayl og "clear"
setlog "display" |ogonly

d /it "-cycle"

d/it/imnct "stats -numstalls -busy_cycles -all”
d/it/imns "stats"
d/it/imclust_array/cluster0O/stats
d/it/imsrf/stats

/1 witelog "display" ".txt"

Thelast lineis commented out, but running it with areal file name (and removing the
comment line /) savesthe statisticsto afile.

Stats for clusters and function units

Stats gives instruction counts and percentages on a per-function-unit basis. Like
debug_info, cluster stats can be printed from one of two places: in the cluster from an
umbrella module (each cluster will work, but they should al be the same) or from a
functional unit. The cluster stats umbrellajust calls each functional unit's stats. Exam-
ples of both are below.

72

May 11, 2002

ISim, the cycle accurate simulator

These are dynamic instruction counts. Static instruction counts are at the bottom of the
.uc file. Note also that the stats include the time for memory initiaization, etc. (so
there'san awful lot of "NONE"s), as | suppose they should; running several kernelswill
only generate cumulative stats. It is currently implemented quite simply and ticks once
each time the functional unit's "evaluate()" functionis called, so it doesn't handle stalls
correctly at thistime.

The command

d ./stats "reset"

will reset stats, called from either the cluster or afunctional unit, so the programmer can
have awarm gtart for the statsinfo.

[28737] isine p ./clust_array/cluster0/
p ./clust_array/cluster0/
prefix: /it/imclust_array/cluster0/

[28737] isinp d ./fu/ful/stats
d ./fu/ful/stats
/it/imclust_array/cluster0O/fu/fuO/stats (npdule): Instr count: 28737
NONE 26657 (92.8%
FADD 320 (1.1%
FSUB 800 (2.8%
| SELECT32 960 (3.3%

[28737] isink d ./stats
d ./stats
/it/imclust_array/cluster0/stats (nodule):
FUO: Instr count: 28737

NONE 26657 (92.8%

FADD 320 (1.1%

FSUB 800 (2.8%

| SELECT32 960 (3.3%
FULl: Instr count: 28737

NONE 26657 (92.8%

FADD 640 (2.2%

FSUB 960 (3.3%

| SELECT32 480 (1.7%
FU2: Instr count: 28737

NONE 26817 (93. 3%

PASS 160 (0.6%

FADD 960 (3.3%

FSUB 160 (0.6%

| SELECT32 640 (2.2%
FU3: Instr count: 28737

NONE 27137 (94. 4%

| SELECT32 320 (1.1%

FMUL 1280 (4.5%
FU4: Instr count: 28737

NONE 27297 (95.0%

| SELECT32 160 (0.6%

FMUL 1280 (4.5%
FU5: Instr count: 28737

NONE 27617 (96.1%

PASS 1120 (3.9%
FU6: Instr count: 28737

May 11, 2002 73

ISim, the cycle accurate simulator

NONE 28737 (100. 0%
FU7: Instr count: 28737
NONE 28737 (100. 0%
FU8: Instr count: 28737
NONE 23617 (82.2%
COVMWMUCI 5120 (17.8%

8.4.2 Stats for SRF

The SRF's stats module is located in /it/im/srf/stats. It is amodule much like the cluster
stats and can be displayed using the following command:

d/it/imsrf/stats

It displays the total number of reads and writes from and to the SRF as well as which
streambuffer was responsible for the reads and writes. Dividing the total number of
reads and writes by the total number of cycles gives the SRF achieved bandwidth. Sam-
ple outputis:

lit/imsrf/stats (nodul e):

SRF Total Reads: 5426112 [cycles reading: 169566 (5.09823%]
SBO (/it/imsrf/sbuf0): 2647712
SB1 (/it/imsrf/sbufl): 1678176
SB2 (/it/imsrf/sbuf2): 349952
SB3 (/it/imsrf/sbuf3): 308736
SB4 (/it/imsrf/sbuf4): 0O
SB5 (/it/imsrf/sbuf5): 0O
SB6 (/it/imsrf/sbuf6): 0O
SB7 (/it/imsrf/sbuf7): O
SB8 (/it/imsrf/sbuf8): 21664
SB9 (/it/imsrf/sbuf9): 0
SB10 (/it/im srf/sbufl10): 212896
SB11 (/it/im srf/sbufll): 71456
SB12 (/it/imsrf/robufl2): 72864
SB13 (/it/imsrf/robufl3): 62656
SB14 (/it/imsrf/sbufl4):
SB15 (/it/imsrf/sbufl5):
SB16 (/it/im srf/sbufl6):
SB17 (/it/imsrf/sbufl7):
SB18 (/it/imsrf/sbufl8):
SB19 (/it/imsrf/sbufl9):
SB20 (/it/im srf/sbuf20):
SB21 (/it/imsrf/sbuf21): 0O

SRF Total Wites: 4520896 [cycles witing: 141278 (4.24772%]
SBO (/it/imsrf/sbuf0): O
SB1 (/it/imsrf/sbufl): 504064
SB2 (/it/imsrf/sbuf2): 1145408
SB3 (/it/imsrf/sbuf3): 1107808
SB4 (/it/imsrf/sbuf4): 800000
SB5 (/it/imsrf/sbuf5): 119040
SB6 (/it/imsrf/sbuf6): 119040
SB7 (/it/imsrf/sbuf?7): 51520
SB8 (/it/imsrf/sbuf8): 0
SB9 (/it/imsrf/sbuf9): 0
SB10 (/it/imsrf/sbufl0): O
SB11 (/it/imsrf/sbufl1l): O
SB12 (/it/im srf/robufl2): 644288
SB13 (/it/imsrf/robufl3): 29728

[eNeoNeoNeoNoNoNo]

May 11, 2002

ISim, the cycle accurate simulator

SB14 (/it/imsrf/sbufl4)
SB15 (/it/im srf/sbufl5)
SB16 (/it/im srf/sbufl16)
SB17 (/it/imsrf/sbufl?)
SB18 (/it/imsrf/sbufl18)
SB19 (/it/im srf/sbufl9)
SB20 (/it/im srf/sbuf20)
SB21 (/it/imsrf/sbuf21)
SRF Cycles Idle: 3015131 (90.654%

[eNeoNeoNeoNoNoNoNel

8.4.3 Stats for the Microcontroller

The microcontroller statistics are accessed by displaying the microcontroller module
“mct” with the argument “stats’. It contains statistics on the total number of busy
cycles, the number of cluster stalls, and the busy cycles and stalls as well as the number
of invocations for each kernel. Stalls are generated using the “-num_stalls” argument;
the number of busy cycles, with “-busy _cycles’; and the kernel statistics with “-all”.

d/it/imnmt "stats -numstalls -busy_cycles -all"

/it/imnct (nodul e)
Stalls : 82576
Busy Cycles : 2740028

Statistics for kernel : render_sc/rtsl_advs/vertex_programKkc. uc

Total Statistics

invocations : 218
Total Cycles : 109436
Total Stalls : 436

Statistics for kernel : render_sc/rtsl_advs/ perbegi n_programkc. uc

Total Statistics
invocations : 1
Total Cycles : 64
Total Stalls : 3

8.4.4 Stats for the Memory System

The memory system statistics are accessed by displaying the memory system module
“ms’ with the argument “stats’. Among the statistics are found the number of loads and
stores on each address generator (which can be used to cal culate memory bandwidth)
and statistics for each memory bank and reorder buffer. An example output is displayed
below:

d/it/imns "stats"

[it/imnms (nodul e)
Li ve: 3325975

AG 0

May 11, 2002 75

ISim, the cycle accurate simulator

| oads: 638584 stores: 67392 active: 929848 srf stalls: 180553 bank

stalls: 43319
| oad: stride

streans: 403 count: 503752 indirect: streans: 432

count: 134832 bitrev: streans: 0 count: O

store: stride:

67040 bitrev

AG 1

streams: 2 count: 352 indirect: streans: 369 count:

streans: 0 count: O

| oads: 28584 stores: 60872 active: 152960 srf stalls: 20492 bank

stalls: 43012
| oad: stride

streanms: 52 count: 20712 indirect: streans: 78 count:

7872 bitrev: streans: 0 count: O

store: stride

streans: 2 count: 56 indirect: streans: 151 count:

60816 bitrev: streans: 0 count: O

Bank 0O

Bank Buffer:

Return Buffer
Hol d Buffer 0O
Hol d Buffer 1

store | atency

32/ 32 stalled: 144970
4/ 32 stalled: 207
2/2 stalled: 9667
2/2 stalled: 9805

mn: 2 max: 753 avg: 114 (total: 33548)

max nmshr packets: 38

Bank 1

Bank Buffer:

Return Buffer
Hol d Buffer O
Hol d Buffer 1

store | atency:

32/ 32 stalled: 143911
7/32 stalled: 838
2/2 stalled: 9580
2/2 stalled: 9815

mn: 2 max: 921 avg: 117 (total: 31770)

max nmshr packets: 40

Bank 2

Bank Buffer:

Return Buffer
Hol d Buffer 0O
Hol d Buffer 1

store | atency:

32/32 stalled: 143251
8/ 32 stalled: 317
2/2 stalled: 7289
2/2 stalled: 6997

mn: 2 max: 937 avg: 109 (total: 31588)

max nmshr packets: 45

Bank 3

Bank Buffer:

Return Buffer
Hol d Buffer 0O
Hol d Buffer 1

store | atency

32/ 32 stalled: 144236
2/ 32 stalled: 550
2/2 stalled: 7726
2/2 stalled: 8712

mn: 2 max: 1385 avg: 112 (total: 31358)

max nmshr packets: 38

ROB 0

Buffer 0: 4/4
Buffer 1: 4/4
Buffer 2: 4/4

76

May 11, 2002

ISim, the cycle accurate simulator

Buffer 3. 4/4

|load latency: mn: 5 max: 337 avg: 36 (total: 638584)
ROB 1
Buf f er
Buf f er

Buf f er
Buf f er

4/ 4
4/ 4
4/ 4
4/ 4

whko

| oad latency: mn: 6 max: 317 avg: 62 (total: 28584)

8.5 Microcode Breakpoints

Microcode breakpoint commands can be entered from the command-line interface in
the simulator by setting the mc_store with a string. So, a sample command would ook
like:

set ./nct/nt_store "command”

The command formats are :

s_line nane
c_line nane
s_idx name
c_idx name
c_al

H H R

The c_all command clears al previously set breakpoints. For the other commands, the
name field refers to the name of the microprogram. Thisis simply the name of the
microcode file stripped of the the path and extension; i.e., sort/sort8.uc would have the
name "sort8".

The g/c_line commands will only work if the microcode file was produced by schedul-
ing in sequential mode (and will give an error message as areminder if thisis not the
case). Thisis necessary because the # field refers to aline number from the original
microassembly file. Thisisuseful because it saves the time spent looking for certain op
in the microcode file. The s prefix stands for set and the c prefix for clear.

The g/c_idx commands are similar except the # field in these commands refer to arela
tive index into the microcode program as stored in the microcode store. In other words,
this number is exactly the instr # which can be found in the microcode file. One must
refer to the microcode file to reliably ascertain where to set the breakpoint for these
commands. These two commands can be used with any scheduling method.

Let'slook at a quick example. The following shows an example of how to set a break-
point in at instruction #5 in the mpeg_sc/rle_kc.uc kernel when executing the mpeg_sc/
mpeg2_regress.sim application.

[48598] /it/inmlsc : Fi ni shed : Y dct
[48605] /it/imsc : Starting : CrCb dct

(<Ctrl-C hit here.)

May 11, 2002 7

ISim, the cycle accurate simulator

[48757] isinkp set ./nct/nc_store "s_idx npeg_sc/rle_kc.uc 5"

Now, we can start execution again with the g command, and as is shown in the output
below, the simulator stops execution at the breakpoint.

48757] isinp g

48914] /it/imsc : Fi nished : CrCb dct
48925] /it/imsc : Starting : RLE
48938] /it : Mcrocode breakpoint reached

—_———

To verify we are at the right point, we can display the status of the microcontroller:

[48938] isinkp d ./ntt
/it/imntt (nodule):

idle: 0 | stall : O | MPC: 165 | end_cnt : 0 | cached_pc :
4294967295

prime_ctr : O | drain_ctr : 0O | <chk_stage : O | last_stage : O

Ucode Load : ---

ncode_store[MPC] : Mcrolnstructions :

Instruction # -- Absolute: 165

Instruction # -- Relative: 5 of program : mpeg_sc/rle_kc.uc

Valid Bit 1

Breakpoint status : set

MC_i nstr : op : UCDATA IN | [IMM: 1732580128 | UCRF
Wite Port 0: 4 | ENDFLAG: FALSE | RF[2][0] Stage : -1 | |In
2 Stage : -1 | UCRF O Stage : -1

Cl uster_M crocode :
Reg Control for register files:
R2: { RdAddrs; WAddrs; InBuses; QutBuses }: { (x) (1) (24) (

())}
InCtrl Mappings: |12 => B24;
Qut Ctrl Mappi ngs:

To remove the breakpoint, the following command would be used. After that, execution
will no longer stop were the breakpoint was once set.

[48938] isinr set ./nct/nc_store "c_idx npeg_sc/rle_kc.uc 5"

Simulator Example

So, how isthe simulator actually used? Let's look at "fft8c.sim", the simulator file we
use to test regression on our 1024-point complex 8 cluster FFT implementation. Here
(initsentirety) isthefile:

---- begin simfile ---
t im
plit/ind

/'l FFT

read txt ./nms/data "fft\input.vfft" O

read txt ./ns/data "fft\twi ddlel-10.vfft" 0x1000
run fft ../hp "8c"

go

venp ./ ns/data "fft\bitrev.vfft" 0x800 0.005

May 11, 2002

ISim, the cycle accurate simulator

printlog error
q

---- end simfile ----

Let's break it down, since most sim files are very similar. User input (either manually or
from asimfile) isindicated by "isim>" below (an actual isim> prompt is preceded by
the global cycle number); isim's responseis preceded by a">".

isimt im

This command instantiates an Imagine simulated processor.

isine p/it/im

Thisisthe 'prefix' command. Since all pieces of the Imagine simulator are instantiated
as modules in a hierarchical manner, the 'p' command us used to navigate to different
levels of the heirarchy. "/it/im" is, in some sense, the "root directory” of the Imagine
processor which we're simulating. Isim responds to the "prefix" command with:

> prefix: /it/im

isim> read txt ./nms/data "fft\input.vfft" O

> Read 2048 val ues.

isim read txt ./nms/data "fft\tw ddl el-10.vfft" 0x1000
> Read 10240 val ues.

Now, wed like to take a FFT of an input data set so we'll read it into memory at memory
address 0. Theinput file with our data set isin text format ("txt") and it isin sourcefile
"fit\input.vfft" (files are accessed relative to the current working directory). The destina-
tion for thisinput data set is our memory system'sdata ("./ms/data"). Similarly, the twid-
dle factors for the FFT are read into memory location 0x1000. The length of theread is
determined by the length of the source file, and the simulator responds to the read com-
mand with the length read.

(If we had not called the "p /it/im/" command earlier, the read command would have had
to have looked like this:

isim> read txt /imit/ms/data "fft\input.vfft" O

)

Now we'd like to run the fft kernel on this data set:

isim> run fft ../hp "8c"
i sim go

"fft" names akernel instance in mcprog.h, which in turn maps to the macrocode we
called "fft" defined in app_fft.cpp. The macrocode will run on the host processor (*../
hp", or alternatively, "/im/hp") and take arguments "8c" (8 cluster). Then we kick off the
kernel with "go", and the simulator responds with:

> [1] I magine Starting

> [10000]

> [12663] MEM LOADS FI NI SHED

May 11, 2002 79

ISim, the cycle accurate simulator

> [17205] COMPUTATI ON FI NI SHED
> [20000]

"Go" runsthe kernel to completion; the macrocode prints out progress messages, and by
default the simulator printsits cycle number every 10000 cycles. (Use "go" with an
argument to change that, as described above.) When we're done we'd like to check that
it'srun correctly:

isim> venp . /ns/data "fft\bitrev.vift" 0x800 0.005

> The nunber of el enments conpared = 2048

> The maxi mumrel ative difference = 0.004925 (for el ement 1023, start-
ing at 1)

> The maxi mum absol ute difference = 0.000006 (for elenent 3, starting
at 1)

> The average absol ute difference = 0.000000

which tests the contents of memory starting at address 0x800 against the expected out-
put contained in "fft\bitrev.vfft" which atolerance of 0.005 (0.5%). The simulator indi-
cates that the differences were within our tolerance; if the differences were above our
indicated tolerance then an error message prints out.

Finally, if there are errors they'd be contained in the error printlog:

isine printlog error

and at the end we quit.

isim q

Now, let's say we want to do the same run but try a couple of different things. First, I'd
like to make sure the correct datais coming into the twiddle factor stream, so I'd like to
look at the first 200 cycles or so of the computation time as the first few twiddle factors
are read into the clusters. To do this| can use the "watch" facility of the debug_info
module. Also, I'd like to get statistics on functional unit utilization for only the calcula-
tion part of the fft kernel. Armed with the cycle counts from the run above | can add a
few linesto the sim file above and check both.

The sim file and its output (which is alittle long) are attached below.

---- begin simfile ----

t im
p lit/im

/'l FFT

read txt ./nms/data "fft\input.vfft" O
read txt ./ms/data "fft\tw ddl el-10.vfft" 0x1000
run fft ../hp "8c"

s 12663

./clust_array/clusterO/stats "reset"

./ clust_array/debug_info "#watch w.r"
./clust_array/debug_info "#watch w.i"
200

./ clust_array/debug_info "#unwatch w. r"
./clust_array/debug_info "#unwatch wi"

[eRNoRN7 BNcRcRNoN

80

May 11, 2002

ISim, the cycle accurate simulator

s 4342

d ./clust_array/cluster0O/stats

go

vernp . /ms/data "fft\bitrev.vfft" Ox800 0.005
printlog error

---- end simfile ----

---- begin sim output ----

Y:\imapps>y:\tools\isimreleaselisimexe -s fft\fft8c.sim-m

gol d8. md

y:\tools\isimrel easelisimexe -s fft\fft8c.sim-mgol d8. nd

Y:\i m apps>echo off

[0] isimt im

[0] isinep /it/im

prefix: /it/im

[0] isine

[0] isime // FFT

[0] isimr read txt ./nms/data "fft\input.vfft" O

Read 2048 val ues.

[0] isimr read txt ./nms/data "fft\tw ddl el-10.vfft"
Read 10240 val ues.

[0] isime run fft ../hp "8c"

[0] isinmp s 12663

[1] Inmgine Starting

[10000]

[12663] MEM LQADS FI NI SHED

[12663] isinr d ./clust_array/clusterO/stats "reset"
lit/imclust_array/cluster0O/stats (nodule):

TOTAL: Instr count: 139293
NONE 139293 (100. 0%

FUO: Reset.

FULl: Reset.

FU2: Reset.

FU3: Reset.

FU4: Reset.

FU5: Reset.

FU6: Reset.

FU7: Reset.

FU8: Reset.

FU9: Reset.

FU10: Reset.

SRF usage: Reads[0:4]: 0 00O

Wites[0:4]: 0000

0x1000

May 11, 2002

81

ISim, the cycle accurate simulator

[12663] isiner d ./clust_array/ debug_info "#watch w.r"
/it/imclust_array/ debug_i nfo (nodul e):

[12663] isinr d ./clust_array/ debug_info "#watch w.i"
/it/imclust_array/ debug_i nfo (nodul e):

[12663] isinr s 200

[12680] w.r: Ox 3f800000 3f 7ffec5 3f 7ffbll 3f 7ff4e6 3f 7f ec43
3f 7f d398 3f 7f c38e

[12681] w.i: Ox 00000000 bbc90f89 bc490e92 bc96c9b6 bcc90abl
bd16c32b bd2f e007

[12687] w.r: Ox 3f7fb110 3f 7f9c19 3f 7f 84ab 3f 7f 6ac8 3f 7f 4e6e
3f 7f 0e58 3f 7eeadd

[12688] w.i: Ox bd48fb2e bd621467 bd7b2b75 bd8a200a bd96a904
bdaf b680 bdbc3ac4

bunch of w.r, wi lines renoved for brevity ..

[12855] w.r: Ox 3eac7cd5 3ea986c4 3eab8f 12 3ea395c4 3eal9ae3
3e9aa084 3e97all7
[12856] w.i: Ox bf710909 bf 718f58 bf 721352 bf 7294f 8 bf 731448
bf 740bdd bf 748422
[12862] w.r: Ox 3e94a032 3e919ddc 3e8e9a22 3e8h9508 3e888e95
3e827dc2 3e7eebel
[12863] w.i: Ox bf 74fa0a bf 756d98 bf 75dec6 bf 764d97 bf 76ba08
bf 778bc6 bf 77f 110

[12863] isine d ./clust_array/ debug_i nfo "#unwatch w.r"
[it/imclust_array/debug_i nfo (nodul e)

CLO:

CL1:

CL2:

CL3:

CLA4:

CL5:

CL6:

CL7:

[12863] isink d ./clust_array/debug_i nfo "#unwatch w.i"
[it/imclust_array/debug_i nfo (nodul e)

CLO:

CL1:

CL2:

CL3:

CLA4:

CL5:

CL6:

CL7:

[12863] isime s 4342
[17205] COVPUTATI ON FI NI SHED

[17205] isink d ./clust_array/clusterO/stats
lit/imclust_array/cluster0O/stats (nodule):

3f 7f €129

bcf b49b8

3f 7f 2f od

bda3308c

3e9d9e76

bf 73913f

3e8586¢ce

bf 772416

82

May 11, 2002

ISim, the cycle accurate simulator

TOTAL: Instr count: 49764
NONE 27215 (54.7%
FADD 1932 (3.9%
| ADD32 2 (0.0%

FSUB 1932 (3.9%
ISUB32 1 (0.0%

AND 1 (0.0%

ILT32 1 (0.0%
SELECT 2580 (5.2%
NSELECT 6440 (12.9%
FMUL 2576 (5.2%
COVMUCPERM 2576 (5.2%
SPREAD 1932 (3.9%
SPWRI TE 1932 (3.9%
SPRW 644 (1.3%

FUO: Instr count: 4524
NONE 1947 (43.0%
FADD 644 (14.2%
| ADD32 1 (0.0%

FSUB 644 (14.2%
SELECT 644 (14.2%
NSELECT 644 (14.2%

FUL: Instr count: 4524
NONE 2590 (57.3%
FADD 1288 (28.5%
AND 1 (0.0%

ILT32 1 (0.0%
NSELECT 644 (14.2%

FU2: Instr count: 4524
NONE 1946 (43.0%
| ADD32 1 (0.0%

FSUB 1288 (28.5%
ISUB32 1 (0.0%
SELECT 644 (14.2%
NSELECT 644 (14.2%

FU3: Instr count: 4524
NONE 1947 (43.0%
SELECT 645 (14.3%
NSELECT 644 (14.2%
FMUL 1288 (28.5%

FW: Instr count: 4524
NONE 2591 (57.3%
SELECT 1 (0.0%
NSELECT 644 (14.2%
FMUL 1288 (28.5%

FU5: Instr count: 4524
NONE 1946 (43.0%
SELECT 646 (14.3%
NSELECT 1932 (42.7%

FU6: Instr count: 4524
NONE 4524 (100. 0%

FU7: Instr count: 4524
NONE 16 (0. 4%
SPREAD 1932 (42.7%
SPWRI TE 1932 (42.7%
SPRW 644 (14.2%

FU8: Instr count: 4524
NONE 660 (14.6%
NSELECT 1288 (28.5%

May 11, 2002

ISim, the cycle accurate simulator

COVMUCPERM 2576 (56. 9%
FU9: Instr count: 4524
NONE 4524 (100. 0%
FU10: Instr count: 4524
NONE 4524 (100. 0%
SRF usage: Reads[0:4]: 1280 1280 1280 O
Wites[0:4]: 2576 0 0 O

[17205] isinr go
[25381] isink venp ./ns/data "fft\bitrev.vfft" 0x800 0.005

The nunmber of el ements conpared = 2048
The maxi numrel ative difference = 0.004925 (for el ement 1023, starting

at 1)
The maxi mum absol ute di fference = 0. 000006 (for element 3, starting at
1)

The average absol ute difference = 0.000000
[25381] isine printlog error

[25381] isinp

[25381] isinmk

[25381] isinmp

---- end sim output ----

May 11, 2002

IStream, the Profile Compiler

9.0 IStream, the Profile Compiler
IStream is a profile compiler built into the Imagine simulators. It records atrace of the
stream operations that are executed by a stream program, called a profile, with special
annotations for any variationsin the operations that depend on the data being processed,
then compiles that profile. | Stream allocates resources such as the stream register file
much more efficiently than a run-time method like that used by ISim for an un-profiled
stream application.
9.1 Preparing an application for profiling
9.1.1 What to profile?
Whileit is possible to profile an entire stream program, a profile usually excludes |oad-
ing initial input streams from the host and saving final output streams to the host. Since
stream variables declared outside of the profile cannot refer to stream data allocated
inside the profile, stream data for final output streams needs to be allocated before the
start of the profile. Thus, atypical profiled stream program has the conceptual format:
strean<Foo> initiallnput = newStreanDat a<Foo>(100);
streanxBar > final Qut put = newStreanDat a<Bar >(100);
streamLoadBin(..., initiallnput);
profile(“nmyProfile”) {
firstKernel (initiallnput, ...);
i;'allstKerneI (..., finalQutput);
}
streanBSaveBin(..., final Qutput);
9.2 How to annotate it?
Since a profile records the stream operations executed, any variations in the stream
operations or streams must be explicitly annotated. See Section 4.9 for a description of
these annotations.
9.2.1 What input data to use?

In the case of applications with data-dependent control flow, the profile must be gener-
ated using input data chosen so that all control-flow blocks (e.g. data-dependent if state-
ments and loops) are executed at least once. If a control-flow block is not executed,

I Stream will generate awarning (see below). ISim will generate afatal error if it
attemptsto enter that block when using the compiled profile. For example, if an applica-
tion contains the following code;

strean<kFoo> a = newSt r eanDat a<Foo>(100) ;
streankBar> b = newStreanDat a<Bar >(500, i m countup);

/1 one Foo converts to a data-dependent nunber of Bars
convert FoosToBars(a, b);
i f_VARI ABLE (b.getlLength() >= 250) ({
conpressBars(b, b);
}

May 11, 2002 85

IStream, the Profile Compiler

9.3

9.3.1

Then the profile must be generated using input data such that the Foo recordsin a will
be converted into at least 250 Bar recordsin b. If this code was inside aloop, this
requirement would only have to be met on one iteration.

Generating a profile

To generate a profile, execute the application once using | Debug (or ISim, though IDe-
bug is recommended). By default, a profile will only be generated if the _sc.cpp file
containing the profile statement has changed, so it is best to always execute the applica-
tion once with the -arp option in order to force rebuilding of the profile after any
changes.

Command line output

When executing the application to generate a profile, the output like the following will
be displayed at the start and end of the profiled section of the stream program, respec-
tively:

Starting profile 'bigtest/bigtestProgram ...
Al ways rebuild profiles (-arp) option enabl ed.
Generating new profile...

Endi ng profile 'bigtest/bigtestProgramdebug' ...

Total execution time: 129865

Generating .pro file...

NOTE: Profile informati on has been saved as: 'bigtest/
bi gt est Program di nfo. txt".

Profile contains 3 spilled streans!

Profile contains 2 doubl e-buffered streans!

Profile contains 1 sequential menory accesses!

Profil econtains1lenptydatadependent control fl owbl ocks! *

*

R Sk R R S S S S Sk S Sk S S R S Sk S S Sk Sk S S S S Sk Sk Sk Sk Sk Sk Sk Sk ko ko

The block displayed at the end of profiling contains important information. First, it con-
tains the name of the profile. Second, it contains the total execution time of the profiled
portion of the application. If the application was executed using |Debug thisisonly an
estimate of total execution time of the kernels. Third, it displays the text “ Generating
.profile...” followed by the name of the profile information file. Lastly, it displays
important warnings about the various inefficiencies or problems in the profiled applica-
tion including:

e Spilled streams, streams which could not be retained in the SRF between accesses
due to size constraints and were therefore stored to memory and rel oaded

¢ Double-buffered streams, streams which could not be fit in the SRF for at least one
access and so were rotated though the SRF using double-buffering

86

May 11, 2002

IStream, the Profile Compiler

9.3.2

Sequential memory accesses, stream which were produced by one kernel and then
used as an index to load an input to the next kernel, or used as part of an input stream
to the next kernel which required the data being stored back to memory (because it
was accessed with a different stride, for instance.)

Empty control flow blocks, control flow blocks which do not contain any profiled
stream operations, usually indicating that these blocks were not executed during the
run.

Output files

Profiling an application results in multiple files. These files are named by appending
different suffixes to the profilename argument passed to the profile statement.

<profilename>.pro - Profile data file containing recorded operations
<profilename>_info.txt - Important information about profile
<profilename>_mar.viz - Memory access register (MAR) allocation
<profilename>_mem.viz - Off-chip memory allocation
<profilename>_nrr.viz - Network routing register (NRR) allocation
<profilename>_shr.viz - Stream buffer, receiving alocation
<profilename>_shs.viz - Stream buffer, sending allocation
<profilename>_sdr.viz - Stream descriptor register (SDR) allocation
<profilename>_srf.viz - Stream register file (SRF) alocation

Thefilesconsist of three main categories. First, aprofile datafile (.pro) that containsthe
recorded stream operations. Thisfileis not human readable and is the only file that is
actually used by the profile compiler for later runs of the application. Second, a human
readable text file containing information about the profile. And third, a series of Sched-
Viz files containing the resource all ocations generated by | Stream. The most important
of these filesis the SRF allocation (_srf.viz), which shows which streams (if any) were
spilled or double-buffered as described in Section 10.3.

May 11, 2002 87

IStream, the Profile Compiler

9.3.3 Profile information (_info.txt) file

The profile information file contains of the following parts.

1. Executive summary that repeats the inefficiency and problem counts shown at the
command line, and lists the recorded stream operations with their input and output
streams.

RSk R Sk S S S S Sk S S S S S Sk Sk S Sk Sk Sk Sk Sk S Sk Sk Sk Sk Sk Sk Sk Sk S
* *
EXECUTI VE SUMVARY:
spilled streams: O
doubl e-buffered streanms: 0O
sequential nenory accesses: 0
enmpty control flow bl ocks: 0

0 kernelLoad (IN 'addAndSum ucode')

1 addAndSum (IN: "s1' 'sl1' QUT: 'tenp')

2 addAndSum (IN: "s1' "tenp’ OQUT: 's2')
*
*

*

R R SR Sk S S S S Sk S S S kS S S S Sk S Sk Sk Sk Sk Sk S Sk Sk Sk Sk S Sk S Sk ko

2. Each stream operation with statistics for each kernel in the form: [minimum execu-
tion time (on iteration n of loop, if applicable) / average execution time / maximum
execution time (on iteration n of loop, if applicable)] [time spent outside of main
loop(s) inkernel time spent in prologue and epilogue of software pipelined loop(s)

]

khkhkkhkhkhhhhhhhhhhhkhhhhhhhkhh bk hkhhkhkhhkhhkkkhkkx

* *

PROFI LE AND STATI STI CS:

1 addAndSum (IN: 's1' 'sl1' QUT: 'tenp')
[42(0) / 42] 42(0) / calls: 1 total: 42]
[nonLoopTine: 0 setupTeardownCycles: 0]

3. Thedefinition of each input and output stream:
IN. s1 (0, 32, , stride, 1, 1)
IN: s1 (0, 32, , stride, 1, 1)
QUT: tenmp (O, 32, , stride, 1, 1)

* *

khkhkkkhkhhhkhhhhhhhhkhhhhhhhkhhhhkhkhhkhkhkhdhkhkhkkx

Thedefinitions of countup and variable size streams are followed by statisticsin the
form [minimum length (on iteration n of loop, if applicable) / average length /
maximum length (on iteration n of loop, if applicable), strip/max end: stripmining
(with spilling some percentage) and maximum end], for example:

QUT: pixel _rast_str (O, 6648, LS, stride, 3, 3) [368(1) / 388/
408(0) / strip/max end: 1224/1224]

88

May 11, 2002

IStream, the Profile Compiler

4. A cumulative summary of the execution time, time spent outside of main loop(s) in
kernel, and time spent in prologue and epilogue of software pipelined loop(s).

R R R S R S S R S S S kS S Sk Sk S S kR Sk R Sk kS Sk ko
* *
CUMULATI VE STATI STI CS:

Total execution time (T): 84
Total non-1oop cycles (NL): 0 (0%
Total | oop setup/teardown cycles (ST): 0 (0%
addAndSum T: 84 NL: 0 ST: 0
84 0 0
* *

R Sk R Sk SR S S S S S Sk S S S S Sk S S Sk Sk Sk Sk Sk kS Sk S Sk Sk o

5. Stripmining and software pipelining information, see the Equation 9.4 and Equation
9.5 for more information.

R R R R R S S R S S S kS S S ko S kR Sk R Sk Rk Sk kS Sk ko ko

* *
STRI PM NI NG

Stripmning | oops nmay inprove perfornmance.

Stream nane (possibly one of many used to access stream data):
suggested streamdata size in records

Stripmning spill: 0%

R R R S S R S S S S Sk kS S Sk ko S Sk Sk Sk Sk Sk kS kS kS Sk S ko

6. Each stream operation and the Imagine operations it compilesinto:

RSk R S Sk S S S S S Sk S S S S S Sk S S Sk Sk Sk Sk Sk kS Sk Sk Sk Sk Sk kS

* *

COWPI LED OPS:

H GHOP: 1 addAndSum (IN 's1' 'sl1' CQUT: 'tenp')

7. A typical control register write showing the register, high and low datawordswritten
(e.g. SRF block and length for SDRs), the stream the register is used for, the issue
slot the operation isissued to (indicated by s:), and, if applicable, the index of the
stream operation argument used to update the Imagine operation due to a data-
dependent stream (indicated by u:)

LONOP: 4 Wite SDRL = 14 / 32 for 's1' (s: 4)
RAW
WAR:

LOANOP: 9 Run 'addAndSumi at MPC O with SDRs(1 1 2) (s: 9)

8. The dependency mask for each Imagine operation
RAW 3 4 56 8

khkhkkkhkhhhhhkhhhhhkhhhhhhhhhhhhkhhkhkhhkhhhkhkhkkx

May 11, 2002 89

IStream, the Profile Compiler

9.3.4

9.4

Common Questions
The profile information file contains the answers to several common questions:
Q. Were there any problems with my program?

A. See the executive summary for a concise summary of important problems such as
spilled streams.

Q. How long (on average) was a certain stream?

A. Look in the profile and statistics section to find the stream operation that produced
the stream. Look at the statistics for that stream and look at the middle of the three num-
bersin brackets

QUT: pixel _rast_str (0, 6648, LS, stride, 3, 3)
[368(1) / 388 / 408(0) [/ strip/max end: 1224/1224]
AN average |length

Q. What size do | make a stream in a stripmined loop?

A. Stripmining is described in the next section. To determine how big to make a strip-
mined stream, look in the STRIPMINING section under the appropriate loop and find
the name of the stream. The first number after the name is the recommend length:

foo: 80 (1600 words), currently 40 (800 words)
N the recommended | ength of foo in records (and in words)

Stripmining

Strip-mining involves processing alarge initia input stream in smaller batches so that
the intermediate streams produced while processing abatch will al fit in the SRF. Since
most stream programs operate on inputs that are larger than the SRF, thisoptimization is
essential for good performance. A typical stream program consists of a series of stream
operations that process an initial input to produce afinal output. Each stream operation
in the series writes one or more outputs that are read as inputs by the next stream opera-
tion. Strip-mining applies the series of stream operationsto a small portion of theinitial
input to produce a small portion of the final output, such that the output of every stream
operation fitsin the SRF. It then applies the series to another small portion of the initial
input to produce another small portion of the final output, and so on until al of theini-
tial input has been processed. The size of this portion of the initial input is called the
strip size. | Stream includes semi-automated stripmining support which, given a strip-
mined loop, recommends a strip size close to the maximum that will fit in the SRF. The
profileinformation file contains strip mining recommendations unless the -nstrip option
isused. | Stream presents a set of recommended sizes for al loops in the program, and
all streamswithin each loop. The profile information file presents the stripmining rec-
ommendations in the following form:
Stripmning spill: 0%
N percentage of streans that overfl ow under bel ow

recommendat i ons (see bel ow)
LOCOP 0

90

May 11, 2002

IStream, the Profile Compiler

A the index of the |oop, nunbered sequentially as ordered within
the profile

foo: 80 (1600 words), currently 40 (800 words)
N the recommended | ength of foo in records (and in words)
bar1l: 160 (6400 words), currently 80 (3200 words)
N the current length of barl in records (and
in words)
bar2: 160 (6400 words), currently 80 (3200 words)
baz: 40 (200 words), currently 20 (100 words)
xyz: 800 (16000 words), currently 400 (8000 words)

| Stream computes these approximate values by scaling the streams within the loop pro-
portionally to the largest size possible without inducing additional memory traffic.
However, not all streams scale proportionately to the strip size, and some are too large
tofit in the SRF for any reasonable strip size. To make the strip size estimate more accu-
rate there are two constants which can be binary OR’ ed into the data-dependence
parameter of a stream definition to control the assumptions made about the scaling of
that stream:

* im_strip_none - the size of the stream does not vary with input size

e im_strip_ignore - the stream is very large and should spill for any reasonable strip
size, do not attempt to scale it and disregard any spilling

For instance, these constants could be used as follows:

imstrean<i mint> nyContants = newStreanData(100, imstrip_none);
i m streanm<Foo> nyMassi veCQut put = newStreanDat a(100000, i m countup
imstrip_ignore)

In the case of variable length, variable size, or variable position streams, stripmining
scales the stream based on its maximum length during the run used to generate the pro-
file. If the stream application detects overflow casesin which such streams exceed the
alocated size and handles them explicitly, it may be desirable to generate alarger than
normal strip size such that a small percentage of the streams will overflow. Strip size
recommendations such that n% of the streams overflow can be generated by running
with the option -stripsp <n>. | Stream prints this percentage, which defaultsto 0, in the
profile information file.

For example, consider the following modified version of the example program used in
the exercise. It performs a slightly more complicated series of three kernel calls, ina
stripmined fashion. It contains a stripmined loop that calls the three kernels on a strip of
the input stream to produce a strip of the output stream each iteration. The strip sizeis
given by the constant stripSize, and isinitially set to 4800 based on a very rough guess
by the devel oper.

#i ncl ude "i db_streant. hpp"
#i ncl ude "test_kc. hpp"

STREAMPROGE(t est Program ;

const int dataSize = 480000

May 11, 2002 91

IStream, the Profile Compiler

const int stripSize = 4800;

voi d testProgram STREAM SCHEDULER, String args)
{
i mstrean<ki mint> NAMED(s1l) =
newsSt r eanDat a<i m i nt >(dat aSi ze, i mstrip_ignore);
i mstreanxi mint> NAMED(s2) =
newSt r eanDat a<i m i nt >(dataSi ze / 2, imstrip_ignore);

i nt data[dat aSi ze] ;

for (int i =0; i < dataSize; i++) {
data[i] =1i;

}

streanloadBi n((ui nt 32*) data, dataSi ze, sl);

imuc<imint> uc_sunl = O;
i muc<i mint> uc_sunR 0;
imuc<imint> uc_sunB

0;
profile("test/testProgrant) {

i mstreanxi mint> NAMED(sli) =
newSt r eanDat a<i m i nt >(stri pSi ze);
i mstrean<ki mint> NAVED(tenpl) =
newSt r eanDat a<i m_i nt >(stri pSi ze);
i mstreanxki mint> NAVED(tenp2) =
newsSt r eanDat a<i m i nt >(stri pSi ze);
i mstreanxi mint> NAMED(s2i) =
newSt r eanDat a<i m i nt >(stri pSize / 2);

int i =0;
int strip;

/1 1oop over strips of input producing strips of output
whi | e_VARI ABLE(i < dataSize / stripSize) {
| ooplter();

/1 copy a strip of input into a fixed size stream sli
strip =1i;
streanCopy(sl(stripSize * strip, stripSize * (strip + 1),
i mvar_incr),
sli);

// add sli to itself to get tenmpl
addAndSunm(sli, s1li, tenpl, uc_sunt);

// add tenpl to itself to get tenp2
addAndSunm(tenpl, tenpl, tenp2, uc_sun®);

// add the even records of tenp2 to the odd records of tenp2
/1 to get a strip of output, s2i
addAndSum(

tenp2(1, stripSize, imfixed, imacc_stride, 2),

tenp2(0, stripSize, imfixed, imacc_stride, 2),

s2i, uc_sunB);

/1 copy the strip of output into s2

st reanCopy(s2i,
s2(stripSize / 2 * strip, stripSize/ 2 * (strip + 1),
imvar_incr));

May 11, 2002

IStream, the Profile Compiler

9.5

i ++;
}
}

streanBSaveBi n((ui nt 32*) data, s2)
cout << endl;
cout << "sum =" <<
(ucRead(uc_sunl) + ucRead(uc_sunR) + ucRead(uc_sunB)) << endl

The profileinformation file generated by running this application contains the following
stripmining suggestions:

R R R S R R S R S S S S Sk Sk S S kR Sk S Sk Sk Sk kS Sk Sk ok ko

* *

STRI PM NI NG

Stripmning | oops may inprove perfornance

Stream nane (possibly one of many used to access stream data):
suggested stream data size in records

Stripmning spill: 0%
LOOP 0
sli: 15976 (15976 words), currently 4800 (4800 words)
tenpl: 15976 (15976 words), currently 4800 (4800 words)
tenp2: 15976 (15976 words), currently 4800 (4800 words)
s2i: 7984 (7984 words), currently 2400 (2400 words)

*

*

khkkkhkhkhhhhhhhhhhhkhhhhhhhkhhhhhhhhkhhkhhkhkhkhkkx

Based on these suggestions, the strip size should be changed to a value near, but not
greater than, 15976. These suggestions require interpretation in the context of the spe-
cific application. For instance, a strip size of 15000 would be a good choice because it
goes evenly into the input size.

Software pipelining

Software-pipelining involves dividing aloop into stages and overlapping execution of
one stage of one iteration with execution of another stage of another iteration. Software-
pipelining can be used to hide the memory accesstime of a sequential memory access, a
memory access that must occur between a pair of sequential kernels. A sequential mem-
ory access occurs when the result of one kernel is stored to memory and then rel oaded
using adifferent access pattern as an input to the next kernel, or when the result of aker-
nel is used as an index stream for an indexed stream loaded as an input to the next ker-
nel. In either of these cases, the second kernel cannot start immediately after the first
kernel, it must wait for the intervening memory load to complete. Software pipelining

May 11, 2002 93

IStream, the Profile Compiler

can hide the latency for this memory access by overlapping execution of akernel from
another stage with the sequential memory access.

iteration i, iteration i-1,

kernell stage 1 stage 2
memory kernell

= access 4

3 = memory

@ Kernel2 (_BD access kernel2
Kernel3 kernel3

\J
L oop with sequential memory access Softwar e-pipelined loop

I Stream includes semi-automated software pipelining support which always recom-
mends a software-pipelined order for the stream operations within any loop that con-
tains a sequential memory access. It can also take a source file with chunks of specially
tagged code that contains aloop and reorder those chunks of code to produce a new
source file containing a software-pipelined version of the loop with a prologue and epi-
logue. The remainder of this section describes how to use this capahility.

The sourcefile must be divided into several tagged sections of code. All tagged sections
of code must begin with “ SWP_BEGIN(tagldentifier);” and end with
“SWP_END(tagldentifier);”. Except for the special tags that begin with “ @”, tagldenti-
fier can be any valid identifier so long as the start and end tags match for each section
and aunique tagldentifier is used for each section. If and only if aspecial tag's
SWP_BEGIN or SWP_END appears outside of a function, it must be within a com-
ment.

The format of the file must be as follows:

/1l SWP_BEG N(@eaders@;
/1 all header files

/1 SWP_END(@neaders@;
#i f ndef SWP

/1 SWP_BEG N(@r ol ogue@;
/1 all code until start of stripmned |oop

SWP_END(@r ol ogue@ ;

SWP_BEG N(@ oopstart @ ;

whi | e_VARI ABLE(/* | oop condition */) {
| ooplter();
SWP_END(@ oopstart @;

SWP_BEG N(tagl);
/1 first stream operation (or group of stream ops)

May 11, 2002

IStream, the Profile Compiler

SWP_END(t agl);

SWP_BEG N(t agN) ;
/1 Nth stream operation (or group of stream ops)

SWP_END(t agN) ;

SWP_BEG N(@ oopi ncr @ ;
/1 increnent |oop condition

SWP_END(@ oopi ncr @ ;

SWP_BEG N(@ oopend@ ;
/] stream operations that happen at the end of each iteration

} Ca
SWP_END(@ oopend@ ;

SWP_BEG N(@pi | ogue@ ;
/1 all code after |oop

/1 SWP_END(@pi | ogue@;
#endi f /* SWP */

In general, each stream operation within the loop should be placed in its own tag to
allow maximum software pipelining flexibility and improve resulting performance.

Software pipelining rearranges tagged sections of code, which can cause variablesto
become unexpectedly |oop carried when reads are moved before assignments, asin:
SWP_BEG N(tagl);

int x =...;
SWP_END(t agl);

SWP_BEG N(t ag9);
Lol =X+ L
SWP_BEG N(t ag9);

becomes:

/] stage2
=X + ...

/] stagel
int x =...;

For this reason, all variables that are not confined to a single tagged section should be
declared outside of the loop. Further, it does not consider data dependencies except for
stream data, and so awrite in one stage of the software pipeline can occur before aread
in alater stage. The worst caseis:

/] stagel
X = ...

May 11, 2002 %

IStream, the Profile Compiler

/] stage2
=X+

This order will cause the read of x in stage 2 to see the value of x for the next iteration.
To avoid this problem, all variablesthat are not confined to a single tagged section need
to be declared as an array of size “numStages.” Each element in the array in used to
track the value in a different stage. All uses of the variable within the loop must be of
the form variable[stage]. For each such variable, a SWP_ROTATE(variable); macro
must be inserted directly after the looplter() statement to rotate the values between
stages. An example of such avariable is shown by the following:

SWP_BEG N(@ oopstart @ ;

int nyVari abl e[nunfst ages] ;

whi | e_VARI ABLE(/* 1 oop condition */) {
| ooplter();
SWP_ROTATE(nyVari abl e) ;
SWP_END(@ oopstart @;

SWP_BEG N(soneTag) ;
nyVari abl e[st age] ++;
SWP_END(soneTag) ;

SWP_BEG N(sonelLat er Tag) ;
cout << nyVari abl e[st age] ;
SWP_END(sonelLat er Tag) ;

Complex data structures or loop-carried variables may not be used in this way and must
be confined to asingle tagged section. If, for some reason, this restriction needsto be
violated, such as when tagged sections are located in different functions, the two tags
can be forced to occur in the same stage by appending a“+” to the start of each tag after
thefirst.

Any nested data-dependent control-flow block (if-statement or loop) within the strip-
mined loop must be confined to a single tagged section, with one exception. A special
version of if VARIABLE, if CONTINUE, can be used to split asingleif statement
across multiple tags by enclosing each portion of theif statement after the first in a sep-
arateif CONTINUE control flow block as follows:

SWP_BEG N(soneTag) ;
i f_VARI ABLE(condition) {
/1 start doing sonthing if condition is true

}
SWP_END(soneTag) ;

SWP_BEG N(t heNext Tag) ;
i f_CONTI NUE(condi tion) {
/1 do nore

}
SWP_END(soneTag) ;

96

May 11, 2002

IStream, the Profile Compiler

Successive if CONTINUE blocks assume that the prior if CONTINUE blocks have
also been executed. This assumption improves performance greatly because it allows
the profile compiler to assume that inputs used in later if CONTINUE blocks came
fromif _CONTINUE blocksin the sameiteration. Otherwise, if multipleif VARIABLE
blocks were used, it would conclude that the inputs could come from a previous itera-
tion and try to keep such streams in the SRF for the entire loop. This conclusion results
in increased SRF usage and usually much more memory traffic due to spilled streams.

To generate a new source file from the tagged source file, execute it with the -arp and -
poN <tagged sourcefile 1> ... <tagged sourcefile N> options, where the first tagged
sourcefileisthefile containing the loop to be stripmined and source filestwo through N
contain functions called by that source file which can aso contain tagged sections of
code.

The resulting source file containing a pipelined loop is named by appending “pipe_” to
the start of the name of the old source file. Both the original source file and the pipe-
lined source file can beincluded in the same VC++ project, but only one sourcefile can
be used at atime. If the project includes “ #define SWP” in aheader file common to both
source files (or in the global definitions), then the pipelined fileis used. If it does not,
then the original fileis used.

Returning to the example used for stripmining, consider software pipelining the loop to
hide the memory access time involved in storing the stream temp2 to memory in order
to load its even and odd elements. The following shows the program with software pipe-
lining tags added, and variable strip modified for software pipelining:

/1l SWP_BEG N(@eaders@;

#i ncl ude "i db_streant. hpp"
#i ncl ude "test_kc. hpp"

/1 SWP_END(@eaders@;

#i f ndef SWP

/1 SWP_BEG N(@r ol ogue@;
STREAMPROG(t est Program ;

const int dataSize = 100000;
const int stripSize = 4800;

voi d testProgram STREAM SCHEDULER, String args)
{
i mstrean<ki mint> NAMED(s1l) =
newsSt r eanDat a<i m i nt >(dat aSi ze, i mstrip_ignore);
i mstreanki mint> NAMED(s2) =
newSt r eanDat a<i m i nt >(dataSi ze / 2, imstrip_ignore);

i nt dat a[dat aSi ze] ;

for (int i =0; i < dataSize; i++) {
data[i] =i;

}

streanloadBi n((ui nt 32*) data, dataSi ze, sl);

May 11, 2002 97

IStream, the Profile Compiler

i muc<i mint> uc_sunl = O;

imuc<i mint> uc_sun?
i muc<i mint> uc_sunB

pr of

I
L

0;

ile("test/testProgrant) {

i mstrean<i mint> NAVED(sli) =
newSt r eanDat a<i m i nt >(stri pSi ze);
i m streanxi mint> NAMED(tenpl) =

newSt r eanDat a<i m i nt >(stri pSi ze);

i mstreanxki mint> NAVED(tenp2) =

newSt r eanDat a<i m_i nt >(stri pSi ze);

i mstrean<i mint> NAVED(s2i) =

newsSt r eanDat a<i m i nt >(stri pSize / 2

int i =0;
int strip[nunttages];
SWP_END(@r ol ogue@ ;

SWP_BEG N(@ oopstart @ ;

11

| oop over strips of input producin

whi | e_VARI ABLE(i < dataSize / stripSi

| ooplter();
SWP_ROTATE(strip);
SWP_END(@ oopstart @;

SWP_BEG N(tagl);

/1 copy a strip of input into a fix

strip[stage] = i;

streanCopy(sl(stripSize * strip[sta
(strip[stage] + 1), imwvar_incr),
sli);

SWP_END(t agl);

SWP_BEG N(t ag2);

// add sli to itself to get tenpl
addAndSun(sli, sii, tenpl, uc_s
SWP_END(t ag2) ;

SWP_BEG N(t ag3);
// add tenpl to itself to get tenp2

)

g strips of output
ze) {

ed size stream sli

ge], stripSize *

um) ;

addAndSun(tenpl, tenpl, tenp2, uc_sun);

SWP_END(t ag3) ;

SWP_BEG N(t ag4);

// add the even records of tenp2 to
/1 to get a strip of output, s2i
addAndSum(

tenp2(1, stripSize, imfixed, im,
tenp2(0, stripSize, imfixed, im,

s2i, uc_sunB);
SWP_END(t ag4) ;

SWP_BEG N(t ag5) ;
/1 copy the strip of output into s2
st reanCopy(s2i,
s2(stripSize / 2 * strip[stage],
1), imvar_incr));
SWP_END(t ag5) ;

the odd records of tenp2

acc_stride, 2),
acc_stride, 2),

stripSize / 2(strip[stage]

+

98

May 11, 2002

IStream, the Profile Compiler

SWP_BEG N(@ oopi ncr @ ;
i ++;
SWP_END(@ oopi ncr @ ;
SWP_BEG N(@ oopend@ ;
}
SWP_END(@ oopend@ ;

SWP_BEG N(@pi | ogue@;
}

streanBSaveBi n((ui nt 32*)data, s2);
cout << endl;
cout << "sum =" <<
(ucRead(uc_sunl) + ucRead(uc_sunm?) + ucRead(uc_sunB)) << endl;

}
/1 SWP_END(@pi | ogue@ ;

#endi f

Generating aprofilefor this program using the -pg option resultsin the following source
file, which contains a software pipelined version of theloop. Note that because the order
of kernels changes, the best strip size al'so changes. For this reason, it is recommended
that 1oops be software-pipelined then have their strip sizes adjusted based on the strip-
mining recommendations for the new software-pipelined loop.

#i ncl ude "i db_streant. hpp"
#i ncl ude "test_kc. hpp"

/1

#i f def SWP

#undef stage

#defi ne stage stage
#undef nuntt ages
#defi ne nunttages 2

STREAMPROG(t est Program ;

const int dataSize = 100000;
const int stripSize = 10432;

voi d testProgram STREAM SCHEDULER, String args)
{
i mstrean<ki mint> NAMED(s1l) =
newSt r eanDat a<i m i nt >(dat aSi ze, i mstrip_ignore);
i mstreanki mint> NAMED(s2) =
newSt r eanDat a<i m i nt >(dataSi ze / 2, imstrip_ignore);

i nt dat a[dat aSi ze] ;

for (int i =0; i < dataSize; i++) {
data[i] =1i;

}

streanloadBi n((ui nt 32*) data, dataSi ze, sl);

i muc<i mint> uc_sunl
i muc<i mint> uc_sunR
imuc<imint> uc_sunB

0;
o

0,

May 11, 2002 %9

IStream, the Profile Compiler

profile("test/testProgrant) {

i mstrean<i mint> NAVED(sli) =
newSt r eanDat a<i m i nt >(stri pSi ze);
i mstrean<ki mint> NAVED(tenpl) =
newsSt r eanDat a<i m i nt >(stri pSi ze);
i m streanxi mint> NAMED(tenp2) =
newSt r eanDat a<i m i nt >(stri pSi ze);
i mstreancki mint> NAVED(s2i) =
newSt r eanDat a<i m.i nt >(stri pSize / 2);

int i =0;
int strip[nunttages];

#define Pl PELI NE

#i

fndef PIPELI NE
/1 1oop over strips of input producing strips of output
whi | e_VARI ABLE(i < dataSize / stripSize) {
| ooplter();
SWP_ROTATE(strip);

#endi f

set SWP();

int stage = O;
/1 copy a strip of input into a fixed size stream sli
strip[stage] = 1i;
streanCopy(sl(stripSize * strip[stage], stripSize *

(strip[stage] + 1), imuwvar_incr),

#i

sli);

/1 add sli to itself to get tenpl
addAndSun(sli, s1ii, tenpl, uc_sunt);

fdef PIPELINE
i ++;

/1 1oop over strips of input producing strips of output
whi | e_VARI ABLE(i < dataSize / stripSize) {

| ooplter();

SWP_ROTATE(strip);

stage = 1,
/1 add tenpl to itself to get tenp2
addAndSun(tenpl, tenpl, tenp2, uc_sun®);

stage = 0;
/] copy a strip of input into a fixed size stream sli
strip[stage] = i;
streanCopy(sl(stripSize * strip[stage], stripSize *
(strip[stage] + 1), imwvar_incr),
sli);

stage = 0;
// add sli to itself to get tenmpl

100

May 11, 2002

IStream, the Profile Compiler

addAndSun(sli, sii, tenpl, uc_sunt)

stage = 1,
// add the even records of tenp2 to the odd records of tenp2
// to get a strip of output, s2
addAndSum(
temp2(1, stripSize, imfixed, imacc_stride, 2),
tenp2(0, stripSize, imfixed, imacc_stride, 2),
S2i, uc_sunB)

stage = 1,
/1 copy the strip of output into s2
st reanCopy(s2i
s2(stripSize / 2 * strip[stage], stripSize / 2 * (strip[stage]
+ 1), imvar_incr));

stage = 1,
i ++;

}

#endi f

stage = 0;
// add tenpl to itself to get tenp2
addAndSun(tenpl, tenpl, tenp2, uc_sun®)

// add the even records of tenp2 to the odd records of tenp2
// to get a strip of output, s2
addAndSum(

tenp2(1, stripSize, imfixed, imacc_stride, 2),

tenp2(0, stripSize, imfixed, imacc_stride, 2),

s2i, uc_sunB)

/1 copy the strip of output into s2
st reanCopy(s2i
s2(stripSize /| 2 * strip[stage], stripSize / 2 * (strip[stage]
+ 1), imyvar_incr))

#i f def PI PELI NE
if (true) {
#endi f
i ++;

}

streanBaveBi n((ui nt 32*) data, s2)
cout << endl
cout << "sum =" <<
(ucRead(uc_sunl) + ucRead(uc_sunR) + ucRead(uc_sunB)) << endl

}

I
#endi f

May 11, 2002 101

IStream, the Profile Compiler

This tranformation is summarized by the following figure:

iteration i, iteration i-1,
addAndSum stage 1 stage 2
addAndSum
4 addAndSum
3 = save all and
) save all and 3 addAndSum load odd and
load odd and) even
even
addAndSum
addAndSum
\J
L oop with sequential memory Softwar e-pipelined loop

access

9.6 Combining stripmining and software-pipelining

An application can contain aloop that is both stripmined and software-pipelined. To
generate such aloop, the following procedure should be used:
1. Make sure SWP is not #defined.

2. Runentire program in idebug with a small strip size (one that should have no prob-
lem fitting in the SRF) and -pg to generate pipelined source file as described in Sec-
tion 9.5.

Add pipelined source file to the project

#define SWP and rebuild

Run the program again in idebug.

Adjust stream sizes based on stripmining recommendations as described in Section
9.4.

7. Run the program again in isim for cycle-accurate performance numbers.

o 0 A~ w

102 May 11, 2002

IStream, the Profile Compiler

9.7 Exercise, part 8

1. Generate aprofile for the test application by compiling and executing it under IDe-
bug with the command line:

test/Rel ease/test.exe -m gold8.md -stest/test.sim -idb -arp

2. Executeit under ISim using that profile with the command line:
test/Rel ease/test.exe -m gold8.md -s test/test.sim -fht
Do not quit therun, it will be used in the next part of this exercise.

May 11, 2002 103

SchedViz, the Interactive Visualizer

10.0

SchedViz, the Interactive Visualizer

10.1

10.2

10.2.1

SchedViz is an interactive tool for visualizing schedules of various types. At present,
SchedViz is used for visualizing three kinds of schedules: a kernel schedule produced
by 1Scd, aresource (e.g. SRF) alocation produced by | Stream, and a high-level trace of
an application produced by 1Sim.

Basic Usage

SchedViz has a multiple document interface (MDI), the basic functionality of which
should be familiar to anyone who has used a Microsoft office application. A schedule
visualizer file (.viz) can be opened using the File Menu, or by executing SchedViz.exe
from the command line with the file name as the only argument.

Each schedule is displayed in its own document window within the SchedViz container
window. A document window contains (top to bottom) a large white picture box show-
ing all or some of the schedule, a narrow text box that displays information about what-
ever the mouse is currently being held over in the schedule, and set of “tape-player”
controls and scroll bar which can be used to replay the scheduling process as described
in Section 10.7.

A schedule has one or more resources displayed a ong the top, horizontal axis, and a
time displayed along the | eft, vertical axis. A rectangle within the axesindicates using a
resource over a period of time. Initialy, all of a schedule is shown. To zoom in on part
of aschedule, position the mouse over a corner of the region of interest, hold down the
right mouse button, and drag the mouse to define a rectangular region to zoom in on,
then release the right button. To zoom out and see the whole schedul e again, right-click
on the schedule.

IScd Kernel Schedules
Operations

When akernel is scheduled, I Scd also generates a SchedViz file with a.viz extension as
described in Section 5.5. When viewed using SchedViz, the schedul e is shown with the
name of each functional unit in an Imagine cluster across the top, and the cyclesin the
kernel down the side. Small rectangles aligned beneath each functional unit indicate an
operation on that functional unit, with latency reflected by the vertical size of the rectan-
gle. An operation rectangle can be white, indicating that it was scheduled as early as
possible, light yellow indicating that it was delayed due to functional unit availability, or
light blue indicating that it was delayed due to interconnect resource availahility.

104

May 11, 2002

SchedViz, the Interactive Visualizer

10.2.2

10.2.3

Holding the mouse over an operation displays information about the operation in the
text box below the schedule, with the following format:

OP: (bfly_pair [RF6[3] RF7[14]]) =

N result ~ stored in registers
SELECT (new_st age, hw_const#0, tnp#l1l)
N opcode ~ operands

b=5, i =53/ 53, s=0/ 0,
N basic block ” instruction start/end » SWP stage start/end
u=0, t =272, | =103

A func. unit index AN scheduling order ~ KernelC Iline nunber

Basic Blocks

Basic blocks are separated by horizontal black lines that span the width of the schedule,
with downward or upward curling tips representing the start or end of aloop, respec-
tively. A single basic block can be shown and al other basic blocks hidden by holding
the mouse over the basic block and pressing Ctrl-V. Pressing Ctrl-V again shows all
basic blocks.

If a schedule contains a software pipelined basic block, the operationsin each stage of
that basic block can be shown by positioning the mouse over the block and pressing
Ctrl-X. Each stage is separated by a dashed horizontal line. Operations from one stage
are shown within other stages as gray outlines.

Dependencies

A kernel schedule also contains information about the dependencies between opera-
tions. Initialy, al dependencies are hidden. To show (or hide, if aready visible) the
dependencies involving an operation, left-click on that operation or hold down the left
mouse button and select a region containing the operation. To show (or hide) all depen-
dencies, press Ctrl-D.

A schedule contains three types of “dependencies:”

1. normal dependencies such as read-after-write dependencies, which are shown as
solid colored lines with different colorsindicating:
* red = read-after-write or read-forward-write for scratchpad
* purple = write-after-read or write-forward-read for scratchpad
* blue = read-after-read
* green = write-after-write
* yellow = permanent-state-change-in-same-or-later-stage-as-|oop-condition-
check-operation

2. specia software pipelining dependencies that show which operation must occur
within one iteration interval of one another, which are shown as dotted colored lines

3. communications between operations, which are shown as gray lines

By default, only the normal dependencies are visible. To select another type of depen-
dency, press the corresponding number key (1-3) or use the View menu.

May 11, 2002 105

SchedViz, the Interactive Visualizer

10.3

10.3.1

10.3.2

10.3.3

Holding the mouse over a dependency displays information about the dependency with
the following format:

DEP: type=nornal , dist=1
N type of dependency " min. difference between cycle ops issued
sa=1, sh=2, cp=1

N used for schedul er debugging N cp=1lif on critical path

The critical path for akernel can be displayed by pressing Ctrl-C.

IStream Resource Allocations

When aprofileis compiled, | Stream produces a SchedViz file for each type of resource
it allocates: the SRF, memory, and various types of control registers (e.g. SDRs). When
viewed using SchedViz, aresource allocation has the address space of the resource
across the top, and “cycles’ down the left side with a stream operations (e.g. kernels)
occurring every three “cycles.”

Stream Operations

Stream operations are indicated by dark grey horizontal bars. Holding the mouse above
a stream operation displays information about the operation in the following format:
OP: 24 xyrast (IN '"rast_tri_str' OUT: 'pixel_rast_str')
N index of operation “input streams Aout puts streans
b=0, i=73/73, u=0, f=0/1, t=0
A for internal purposes, uninportant

Allocated Resources

An allocated resource isindicated by adark gray rectangle spanning the allocated por-
tion of the address space horizontally and the duration for which the resourceis allo-
cated vertically. Holding the mouse above an allocated resource displays information
about the resource in the following format:

OP: pos: 820 size: 198

N location in address space “size of allocation
b=0, i=69/89, u=0, f=0.800781/0.994141, t=51
N for internal purposes, uninportant

Reads and Writes

Reads from the inputs to a stream operation are indicated by light colored bars just
above the intersection of athat stream operation and the portion of the resource that is
read. Writes to the outputs of a stream operation are indicated by dark colored bars just
below the intersection of that stream operation and the portion of the resource that is
written. These bars are of one of three colors:

e green, indicating a normal read or write

¢ blue, indicating aread or write that requires amemory access (or update to a control
register by the host)

* red, indicating aread or write that requires a double buffered memory access.

106

May 11, 2002

SchedViz, the Interactive Visualizer

10.4

Holding the mouse above aread or write displays information about the read or writein
the following format:

OP: pixel _rast_str (0, 6336, LS, stride, 3, 3)

N name of stream N derivation of stream (coordinates in words)
b=0, i=74/74, u=0, f=0.800781/0.994141, t=0
A for internal purposes, uninportant

For any resource alocation, it is possible to highlight all reads and writes that require
memory accesses caused by spilled data by using the Find dialog box described in Sec-
tion 10.6 and searching for the word “ spill.”

ISim Application Traces

ISim can be used to produce an application trace showing how high-level Imagine
resources (such asthe clusters) were used during the course of the application. To dump
such an application trace, first change the prefix at the |Sim command line to the top
level of the Imagine chip you want to dump the trace for -- see Section 8.6 for an exam-
ple of how to do this. Then, the following command will dump atrace:

d ./sc “viz [options]”

Thisisassuming that the stream controller is named sc -- this name is determined by the
machine description file (see ips_developer.pdf for details). If the first argument in
quotesisviz, atrace is dumped. Several optional arguments can follow the viz keyword,
and these are listed in Table 10. The default optionsare‘ -vfile test.viz +cl
+msdat.’ (Please see isa.pdf for detailed information on the architectural modules and
stream operations mentioned in the table below).

TABLE 10.

viz command options for dumping application traces

Option Description

-vfilefilename | dump the traceto afile named filename -- relative to path from which ISim
was started

-from cycle only dump operations that started after cycle number cycle

-to cycle only dump operations that started before cycle number cycle

+/-cl display or don’t display kernel operations

+/-ms display or don’t display memory operations

+/-sc display or don’t display stream controller operations

+/-ni display or don’t display network interface operations

+/-clstr display or don’t display cluster stream transfers

+/-msdat display or don’t display memory system data stream transfers

+/-msidx display or don’t display memory system index stream transfers

+/-mcstr display or don’t display microntroller stream transfers for loading microcode
instructions

May 11, 2002 107

SchedViz, the Interactive Visualizer

TABLE 10. viz command options for dumping application traces
Option Description
+/-nistr display or don't display netowrk stream transfers
+/-histr display or don't display host data strean transfers
+all display all streams

10.4.1 Used Resources

The application trace shows resources across the top and cycles down the side. A rectan-
gle under a particular resource indicates how that resource is used for the span of cycles
covered by the height of the rectangle. Holding the mouse above a resource usage rect-

angle displaysinformation about it in the following format:

OP: 132 Run 'assenble_poly clip' at MPC 830 with SDRs(4 6 20 21 22)
AN description of the Inagi ne operation that used the resource
(s: 7) b=108, i =7281836/ 7282236, u=0, t=92989
A ignore ” cycle range of use ~ ignore

10.4.2 Other
Barriers are shown by horizonta black lines (barriers are instructions that require al
previous stream operations to have completed before any subsequent operation can be
issued).

10.5 Menu Reference

The following gives brief explanation of what each menu items does. Most menu items
have associated hot keys shown in parentheses.

10.5.1 File
* Open (Ctrl-O) Opens new schedule window
* Reopen (Ctrl-R) Updates current schedule window
e Print Prints schedule _as shown_to printer
e Print to metafile Prints schedule _as shown_ to .wmif file
¢ Close Closes current schedule window
e Exit Quits SchedViz
10.5.2 View

* Visbledep. types(1...) Controls which dependency types are visible

e Click togglesonly up deps.
L eft-click toggles only dependencies to operation

¢ Click toggles only down deps.
L eft-click toggles only dependencies from operation

* Visbleblocks (Ctrl-V) Controls which blocks are visible

108 May 11, 2002

SchedViz, the Interactive Visualizer

10.5.3

10.5.4

10.5.5

10.6

10.7

¢ Expanded blocks (Ctrl-X) Controls which software pipelined blocks are expanded

* Black and white Displays everything in black and white when selected,
cannot be reversed except by reloading

* No node text Hides text in schedule

Tools

e Find.. Displaysfind dialog box (see X below) to find and
mark operations and/or dependencies

* Find passes Finds and marks all pass operations

e Find critical path Finds and marks al critical path dependencies

e Unmark al Unmarks al pass operations and dependencies

* Show .vizfile (F2) Displays schedule window

e Show .i file (F3) Displays microassembly file

e Show .ucfile (F4) Displays microcode file

Window

e (displaysalist of al windows, select oneto view it)

Help

e Hep (FD Displays help file

e About Displays version information
Find Dialog

The find dialog can be used to search for specific text associated with an object in a
schedule (the text associated with an object is the text shown when the mouse is held
over that object). To use the find dialog, enter the string to search for, select acolor to
highlight with, select operations and/or dependenciesto be highlighted. Find supports
limited regular expressions in which "*" matches any series of characters, "?' matches
any one character, and “[<start char>-<end char>]", e.g. “[A-Z]", matches a range of
characters.

The Find dialog remembers previous finds, which can be selected using the drop-down
combo box. In combination with the "Find and Unmark" button this may be used to
selectively unmark things.

Scheduler Replay

The "tape-recorder” buttons and scrollbar at the bottom of the schedule window can be
used to play back the scheduling process slowly. Press ">" to start the schedule replay,
"|I* to pause the schedule replay, and ">[" to show the entire schedule. The scrollbar
thumb can also be dragged to show a specific point in the scheduling process.

May 11, 2002 109

SchedViz, the Interactive Visualizer

10.8 Text Editor

Thetext editor that isto display .i and .uc filesis a simple "Notepad”-like text editor.
Filesareinitially displayed in read-only mode, but can be toggled read-write using
check-box in lower-l€eft corner.

10.9 Exercise, part 9

1. Saveatrace of the application executed in the previous part of the exercise by typ-
ing:
d ./sc “viz -vfile test/test.viz +ms’
2. Use SchedViz to examine the following files:
test/test_kc.viz, the kernel schedule
test/test_srf.viz, the SRF alocation for the application
test/test.viz, the application trace

110 May 11, 2002

Advanced Topics

11.0 Advanced Topics
This section describes how to make a kernel with high register pressure pass register
alocation, how to use StreamC with verilog, and other advanced topics.

11.1 Making a Kernel Passing Register Allocation

Imagine has alarge number of registers and most kernels should pass register allocation.
If akernel failsregister alocation, try scheduling it with the -rf 2 -r 10 command line
options. If it still fails, try to determine which of the following is the problem:

11.1.1 Too many temporary variables:
Affects: very large, very paralel kernels
Symptom: large number of registers occupied in multiple arithmetic units AND/OR
large number of cc registers occupied
Cause: many temporary values are computed early in the loop and used late in the loop
Solution: divide the loop into multiple parts with barrier operations. This solution will
not work for software pipelined loops.
Example: render_sc/renderspan/sort32frag_kc

11.1.2 Loop carried state used in multiple locations:

Affects: kernelswith alot of loop carried state that is used in multiple locations within
the loop (often due to "expands")

Symptom: large humber of registers occupied in arithmetic units
Cause: loop carried variables are replicated in multiple register files

Solutions:

1. add forced copies (assignments using the %= operator) before multiple usesin loop
to make sure that variable isloop carried in one register file only. For example:
| oop {

X % x;// add this
X + ...
X + ...

X % x;// add this
=X+
:X+...;

x= X + 1;
}
2. replace "expands' with arrays

May 11, 2002 m

Advanced Topics

11.1.3

11.1.4

11.1.5

11.2

Example: mpeg_sc/blocksearch_kc

Loop carried variables concentrated on one unit:

Affects: kernelsthat use select operations to update alarge amount of loop carried state
Symptom: large number of registers occupied in divider

Cause: all select operations on loop carried variables are concentrated on divider since
it is often not used for any other purpose

Solution: use the -rf 3 option
Example: render_sc/renderspan/spansprep_kc
Loop-carried variables in a specific register file:

Affects: kernelswith lots of loop carried variables that are used by a unique functional
unit for non-commutative operations

Symptom: asingle register file for a unique functional unit overflows

Solution: added forced copy operations to enable scheduler to store variablesin other
register files (see example above)

Example: mpeg_sc/rle_kc
Other problems

If none of the above seem to apply, try:
1. try many random seeds w/ the -rf 2 option

2. try using the -rf3 option

3. try 1-2 in combination with using the -cons scheduling option

4. add forced copies for any loop carried variables that are used in multiple places

5. increasetheinitial iteration interval for a software pipelined loop above the mini-
mum at which it schedules using the -b command line option (this change gradually
unpipelines the loop).

6. remove al software pipelining

7. group uses of the same variables together, then insert barriers every few lines

8. storeinfrequently used variablesin arrays

9. gplit the kernel into multiple kernels

Using Regression

The Imagine regression suite is intended to provide representative set of applications
that test as much of the Imagine toolset as possible. It verifies the functionality of 1Scd,
| Stream, I Debug, |Sim, and the constituent applications. Testsincluded in it are gener-

112

May 11, 2002

Advanced Topics

11.21

aly targeted tests or representative versions of longer applications (i.e., afull applica-
tion with a smaller dataset).

The regression suite isintended to be run before any checkin to the SourceSafe reposi-
tory. This ensures that any changes made do not affect the functionality of other tools
and/or applications. It is the responsibility of the person performing the checkin to
remove al errorsin the regression suite before committing the checkins. Thus, it
behooves application developers to add a representative test for their application to the
regression suite. This ensuresthat any tool change made later on will be guaranteed to
work with their application.

The regression suite can be run by executing the regress.bat command located in the
im_apps directory. The usage for this command is:

regress [1] [8] [opts] [sim[opts]] [scd [opts]]

Opti ons:
1 - run 1 cluster regress tests
8 - run 8 cluster regress tests
8sc - run 8 cluster streant regress tests

8sca - also run 8 cluster streant regress tests

opts - run the sinulator and scheduler with these options
sim - run the sinulator with opts as options

scd - run the scheduler with opts as options

The default is to run all regress tests. If a nunber of clusters are
specified, then only those tests are perforned. If simor scd is spec-
ified, then only that test will be performed unless the other is also
speci fi ed.

This command will run the | Scd first on all relevant files, and then run the simulator on
the relevant applications. The applications may be run more than once with different
command-line options to test different modes of execution in the siimulator. If the
regression fails, the batch will pause and wait until the user presses akey. If you want to
add atest to the regression suite, please contact abhishek@cva.stanford.edu.

StreamC Regression

StreamC regression is executed using the following variation on the regress command
line:

regress 8sc <options>
regress 8sca <options>

Wherethe “8sc” version runs just StreamC regression and the “8sca’ version also runs
standard regression. All standard regression options are supported.

Adding a StreamC application to regression is similar to adding a normal application,
and consists of the following steps:

1. Add the application the scd.bat so that it can be scheduled with the -a option as
described above.

2. Open gold-scd.bat and search for “REM ADD STREAMC HERE”. Thisline occurs
in two places. The first occurrence marks the end of alist of the applicationsto be

May 11, 2002 113

Advanced Topics

scheduled. Each entry in the list defines the scheduler options for an application, and
has the form:

set gol d8sc_<idx> = -a <application name>

Add anew line above the REM comment of thisform, replacing <idx> with a
unique integer index, and <application name> with the name used by the -a option
for the application.

The second occurrence of “REM ADD STREAMC HERE” is at the end of alist of
callsto schedule the applications. Each entry calls scd.bat with the options specified
above for the application, and takes the form:

call ./scd -g8 Yscdparans% %gol d8sc_<i dx>%

Add anew line above the REM comment of this form, replacing <idx> with the
unigue integer index used above.

3. Open gold-sim.bat and search for “REM ADD STREAMC HERE”. Thisline occurs
in one place, at the end of alist of callsto regress sc_sim, each of the form:

call ./regress_sc_sim<app dir> <app exe root> <simroot> <s|ls root>
%si npar ans%

Add anew line above the REM comment of this form, replacing <app dir> with the
relative path in im_apps of the application directory, <app exe root> with the name

of .exefile, minusthe .exe extension, <sim root> with the name of standard sim file,
minus the .sim extension, and <sls root> with the name of an equivalent sim file that
uses the -sls option described in Section 8.0.

11.3 Using Verilog

StreamC works correctly with the verilog version of the simulator, however data can
only be loaded and saved for the verilog version in the sim file. To enable this to work,
use the -sls command line option, and, for every streamL oadFile, streamSaveFile, and
streamCompare file in the application, add a corresponding aread, dump, or vemp to the
sim file that duplicates the functionality in the same order. Reads should read the datato
some non-overlapping location with a start address as low as possible, but not lower
than 0x100000. Dumps and vemps should specify an address of 0, which will be over-
ridden at run time.

For instance, if the stream program contains the following:

streanloadFil e("streanctest/a.txt", "txt", "", a);
streanLoadFil e("streanctest/b.txt", "txt", "", b);
streanmLoadFil e("streanctest/index.txt", "txt", "", idx);

streanConpar eFi | e("streanctest/output_correct.txt", ¢, 0, "a");

Then add the following to the sim file;
(add this)

114

May 11, 2002

Advanced Topics

11.4

11.4.1

read txt ./ns/data "streanttest/a.txt" 0x100000
read txt ./ms/data "streanctest/b.txt" 0x110000
read txt ./nms/data "streanctest/index.txt" 0x120000

(already in the simfile)
run streanctest ../hp " "
go

(add this)
venp ./ ns/data "streanttest/output_correct.txt" 0 0.0 "a"

Using special hardware units

The run time tools also support the use of specia hardware units. These hardware units
are exposed to a stream application as specia hardware kernels. Hardware kernels are
called just like normal kernels with stream and microcontroller variable arguments but
can contain arbitrary functionality. Implementing a new hardware kernel involvestwo
parts: defining the kernel and modifying I Stream and |Sim for cycle-accurate simulation
of the new hardware.

Defining a hardware kernel

The kernel is defined just like any other kernel, with two major exceptions. First, the
KERNELDEF statement in the _kc.cpp does not contain a.uc file name, since the ker-
nel isimplemented directly in hardware. Instead, information about the hardware kernel
is specified directly in astring passed in place of the file name. This string takes the
form of:

“hw <argument 1 type> <argument 1 resource index> ... <argument n type> <argument
n resource index> hwargs <specia arguments>"

Where the argument types and resource indices correspond to the arguments to the hard-
ware kernel (in order). Argument type can be “i” for and input stream, “0” for an output
stream, or “u”, “r”, or “w”, for amicrocontroller variable that is written and read in the
kernel, only read, or only written, respectively. Argument index is the physical stream
buffer or internal register of the specia hardware unit the argument maps to.

The remainder of the string after “hwargs’ is stored in the kernel definition data struc-
ture (see devel oper documentation). The string is arbitrary, it can be used to convey
whatever information the hardware kernel implementer desires.

Second, the contents of the kernel can be arbitrary code to model the functionality of the
hardware; it does not have to be Kernel C. Persistent state can be supported through the
use of static variables.

The following is an example of a hardware kernel that implements a special hardware
unit that generates streams of constants:

#i ncl ude "i db_kernel c. hpp"
#i ncl ude "test_kc. hpp"
#i ncl ude "i db_kernel c2. hpp"

May 11, 2002 115

Advanced Topics

11.4.2

11.4.3

/1 no .uc file name, direct specification of argunents
KERNELDEF(const Gen, “hwr O r 1 o O hwargs none”)

kernel constGen(i muc<im.int> uc_val,
imuc<i mint> uc_len,
i mostreanxki mint> out)

{

/1 could have arbitrary C++ here
| oop_count (uc_l en) {
out << uc_val;

}
}

For use in implementing special memory units, streams also support the im_cacheable
flag, which allows for special memory handling.

Modifying IStream

| Stream converts a cal to the hardware kernel into the same Imagine operations as a
normal kernel (except that it never loads microcode), but provides a simple mechanism
for directly modifying those operations. The function StreamProfile::modifyOp-
ForHardwareKernel is called for each such operation to make any needed modifica-
tions. Similiarly, setting the im_cacheable flag for a stream causes the
StreamProfile::modifyOpForCacheableStream function to be called for all MAR writes
and memory loads and stores for that stream. Both of these functions are located in
sc_extensions.cpp and documented in the source code.

Modifying I1Sim
ISim must be explicitly modified to handle the operations produced by StreamPro-

file::modifyOpForHardwareK ernel. Such modifications are covered in the ISim devel-
oper documentation. (JDO/UJK?)

116

May 11, 2002

	1.0 Introduction
	1.1 Roadmap

	2.0 Setup
	2.1 Toolset Files
	2.2 Creating a project
	2.3 File Structure
	2.3.1 Shared header file format (*_kc.hpp)
	2.3.2 KernelC file format (*_kc.cpp)
	2.3.3 StreamC file format (*_sc.cpp)

	2.4 Exercise, Step 1

	3.0 KernelC Language Specification
	3.1 Types
	3.1.1 Basic Types
	3.1.2 Record Types
	3.1.3 Type Qualifiers
	3.1.4 Preprocessor Directives
	3.1.5 Comments

	3.2 Kernels
	3.3 Variable Declarations
	3.3.1 Initial Values

	3.4 Control Flow
	3.4.1 Count Loops
	3.4.2 Stream Loops
	3.4.3 Conditional Loops
	3.4.4 Loop Optimization

	3.5 Inline Functions and Methods
	3.5.1 Examples
	3.5.2 Limitations

	3.6 Operations
	3.6.1 ADD
	3.6.2 SATURATING ADD
	3.6.3 SUB
	3.6.4 SATURATING SUB
	3.6.5 ABS
	3.6.6 ABD
	3.6.7 Bitwise Logical Operations (AND, OR, XOR, NOT)
	3.6.8 Comparison Operations (EQ, NEQ, LT, LE, GT, GE)
	3.6.9 SELECT
	3.6.10 MUL
	3.6.11 MULD
	3.6.12 MULRND
	3.6.13 DIV
	3.6.14 FSQRT
	3.6.15 SHIFT (logical)
	3.6.16 SHIFTA (arithmetic)
	3.6.17 ROTATE
	3.6.18 SHUFFLE
	3.6.19 SHUFFLED
	3.6.20 FTOI
	3.6.21 FRAC
	3.6.22 ITOF
	3.6.23 ITOCC
	3.6.24 CCTOI
	3.6.25 Type Cast Operators
	3.6.26 HI
	3.6.27 LO
	3.6.28 RNDM
	3.6.29 SATM
	3.6.30 CHECK_OVF
	3.6.31 CHECK_UNF
	3.6.32 COMMUCPERM
	3.6.33 COMMCLPERM
	3.6.34 INPUT
	3.6.35 OUTPUT
	3.6.36 CONDINPUT
	3.6.37 CONDOUTPUT
	3.6.38 CONDALLINPUT
	3.6.39 CONDALLOUTPUT
	3.6.40 FLUSH
	3.6.41 CID
	3.6.42 UCID
	3.6.43 SYNCH

	3.7 Exercise, Step 2

	4.0 StreamC Language Specification
	4.1 Imagine Basic Types in StreamC
	4.2 Streams
	4.2.1 NAMED Streams
	4.2.2 Null Streams
	4.2.3 newStreamData
	4.2.4 Simple Assignments
	4.2.5 Derivations
	4.2.6 Overriding Record Size and Specifying Coordinates in Words
	4.2.7 Countup Streams
	4.2.8 Stream Derivation Restrictions

	4.3 Microcontroller Variables
	4.4 Kernels
	4.4.1 Kernel Stream Restarts

	4.5 Copying Streams
	4.6 Loading/Saving Streams
	4.7 Network Operations
	4.7.1 Stream Routes
	4.7.2 Network Stream Restarts

	4.8 Controlling Multiple Imagines with One Stream Program
	4.9 Profiling Annotations
	4.9.1 Designating which part of the application to profile
	4.9.2 Data-dependent stream derivations
	4.9.3 Data-dependent control flow
	4.9.4 Restrictions on newStreamData

	4.10 Exercise, Step 3

	5.0 IScd, the Kernel Scheduler
	5.1 Optimizations
	5.2 Input Files
	5.3 Command Line
	5.4 Command Line Output
	5.5 Output Files
	5.6 Exercise, Step 4

	6.0 Run-time Tools Introduction
	6.1 Simulator Script Files
	6.2 Using a Simulator
	6.3 Command line options
	6.4 Data File Formats
	6.5 Example, part 5

	7.0 IDebug, the Functional Simulator
	7.1 Using IDebug with a debugger
	7.2 Exercise, part 6

	8.0 ISim, the cycle accurate simulator
	8.1 ISim Semantics
	8.2 ISim Commands:
	8.3 Debugging
	8.4 Statistics
	8.4.1 Stats for clusters and function units
	8.4.2 Stats for SRF
	8.4.3 Stats for the Microcontroller
	8.4.4 Stats for the Memory System

	8.5 Microcode Breakpoints
	8.6 Simulator Example

	9.0 IStream, the Profile Compiler
	9.1 Preparing an application for profiling
	9.1.1 What to profile?

	9.2 How to annotate it?
	9.2.1 What input data to use?

	9.3 Generating a profile
	9.3.1 Command line output
	9.3.2 Output files
	9.3.3 Profile information (_info.txt) file
	9.3.4 Common Questions

	9.4 Stripmining
	9.5 Software pipelining
	9.6 Combining stripmining and software-pipelining
	9.7 Exercise, part 8

	10.0 SchedViz, the Interactive Visualizer
	10.1 Basic Usage
	10.2 IScd Kernel Schedules
	10.2.1 Operations
	10.2.2 Basic Blocks
	10.2.3 Dependencies

	10.3 IStream Resource Allocations
	10.3.1 Stream Operations
	10.3.2 Allocated Resources
	10.3.3 Reads and Writes

	10.4 ISim Application Traces
	10.4.1 Used Resources
	10.4.2 Other

	10.5 Menu Reference
	10.5.1 File
	10.5.2 View
	10.5.3 Tools
	10.5.4 Window
	10.5.5 Help

	10.6 Find Dialog
	10.7 Scheduler Replay
	10.8 Text Editor
	10.9 Exercise, part 9

	11.0 Advanced Topics
	11.1 Making a Kernel Passing Register Allocation
	11.1.1 Too many temporary variables:
	11.1.2 Loop carried state used in multiple locations:
	11.1.3 Loop carried variables concentrated on one unit:
	11.1.4 Loop-carried variables in a specific register file:
	11.1.5 Other problems

	11.2 Using Regression
	11.2.1 StreamC Regression

	11.3 Using Verilog
	11.4 Using special hardware units
	11.4.1 Defining a hardware kernel
	11.4.2 Modifying IStream
	11.4.3 Modifying ISim

