
Handout #5 1

Homework 1 - Solutions

1 Problem 1-7 (Dally and Poulton)

Scaling of Wire Delay: Suppose a system has a clock cycle of ten gate delays. What clock frequency does
this imply in the years 1990, 2000, and 2010? In these same years, how many clocks, or what fraction of a
clock, does it take t drive a wire from one corner of the chip to the opposite corner? Assume this wire only
runs horizontally and vertically so that its length is twice the linear dimension of the chip. For now, assume
that the delay of a wire is its RC time constant. We will see how to do better in Chapter8.

Solutions:

From Table 1-3, we get
Gate Delay = 0.23 ∗ 0.87(year−1998) ns
Clock cycle = 10 gate delay.
Clock frequency = 1/ clock cycle.

Chip edge, y = 19 ∗ 1.06(year−1998) mm
Length of wire going from one corner of chip to opposite corner is 2y.

From Section 1.3.3.2,
RC of 5mm wire in 1998 = 200ps
RC proportional to L2

RC of 1mm wire in 1998 = 200 / 52 = 8ps

From Table 1-5, RC per unit length scales by 1/x2 = 1.32 every year.

RC per 1mm = 8 ∗ 1.32(year−1998) ps
Wire delay = RC
Wire delay of a wire of length 2y = RC per 1mm * (2y)2

1990 2000 2010
Gate Delay 0.7ns 0.17ns 0.043ns
Clock cycle 7ns 1.7ns 0.43ns
Clock Frequency 142.9MHz 588.2MHz 2.3GHz
RC per 1mm 0.86ps 13.9ps 223.9ps
2 X Chip edge 23.8mm 42.6mm 76.4mm
Wire Delay 0.487ns 25.3ns 1306.9ns
Wire Delay in clock cycle 0.07 clocks 14.8 clocks 3039.3 clocks

2 Problem 3-1 (Dally and Poulton)

Example Transmission Lines: Calculate the electrical properties (RDC , C, L, and Zo) of the following
common transmission media: (a) a twisted pair made of “wire-wrap” wire; (b) RG-58 coaxial cable (compare
your results with the published values); (c) a wire-wrap wire glued to the surface of a PC board, εr = 4.5 and
6 mil dielectric thickness to first plane layer (for this one, you can either ignore that the line is inhomogeneous
or find the appropriate empirical formulas in one of the references). For this exercise, go to the manufacturer’s
data on common wire and cable to find the various physical and electrical parameters.

(a) twisted pair made of “wire-wrap” wire:
Using Coopertools wire-wrap wire with specifications (see http://www.coopertools.com/)
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Part No. AWG Conductor Insulator Outer Diameter (mm)
990222 30 Copper Teflon 0.5

RDC =
ρl

A

L =
εµ

C

Zo =

√

L

C

From Table 3-1 on page 82, we see that copper has a resistivity, ρ, of 1.7 × 10−8Ω − m. From Table 2-2
on page 50, we see that 30-Gauge wire has a diameter of 0.2548 mm (2.548 × 10−4 m). Thus, the radius of
the wire is 0.5 * 2.548 × 10−4m = 1.274 × 10−4m. We calculate the DC resistance per unit length for one
wire as:

RDC =
ρ

A
=

1.7 × 10−8Ω − m

π ∗ (1.274 × 10−4m)2
= 0.333

Ω

m

The total DC Resistance of the twisted pair is twice the DC resistance of one wire. Thus, the DC
resistance of the twisted pair is:

RDC = 0.666
Ω

m

Equation 3-5 on page 83 gives us the capacitance equation for 2 wires:

Cc =
πε

ln( s
r
)

We find the relative permittivity, εr, of the insulator, Teflon, in Table 3-2 on page 84: εr = 2.
Thus, we have:

Cc =
π ∗ 2 ∗ 8.854x10−12 F

m

ln( 0.5mm
0.1274mm

)
= 4.07 × 10−11 F

m
= 40.7

pF

m

Equation 3-8 on page 84 gives us the equation:

C ∗ L = εµ

Thus, we have:

L =
εµ

C
=

2 ∗ 8.854x10−12 F
m

∗ 4π × 10−7 H
m

4.07 × 10−11 F
m

= 5.47 × 10−7 H

m
= 0.547

µH

m

Equation 3-31 on page 93 gives us the equation

Zo =

√

L

C

Thus:

Zo =

√

5.47 × 10−7 H
m

4.07 × 10−11

F

m
= 116Ω
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(b) RG-58 coaxial cable
Using Belden RG-58 coaxial cable with specifications (see: http://www.belden.com/)

Part No. AWG Conductor Insulator Outer Diameter (in) Polyethylene ε
9310 20 Bare Copper Polyethylene 0.114 2.3

From Table 2-2 on page 50, 20-Gauge wire has a diameter of 0.8118 mm (8.118 × 10−4 m). Thus, the
radius of the wire is 0.5 * 8.118 × 10−4m = 4.059 × 10−4 m. We calculate the DC resistance per unit length
as:

RDC =
ρ

A
=

1.7 × 10−8Ω − m

π ∗ (4.059 × 10−4m)2
= 0.0328

Ω

m

Note: we are ignoring the resistance of the return path, the outer conductor, since its resistance is
negligible ( 4 × 10−3 Ω

m
).

Equation 3-4 on page 83 gives us the capacitance equation for 2 wires:

Cb =
2πε

ln( r2

r1

)

r2 = 0.5 * 0.114 in = 0.057 in = 1.45 mm
Thus, we have:

Cb =
2π ∗ 2.3 ∗ 8.854x10−12 F

m

ln( 1.45mm
0.406mm

)
= 1.01 × 10−10 F

m
= 101

pF

m

Equation 3-8 on page 84 gives us the equation:

C ∗ L = εµ

Thus, we have:

L =
εµ

C
=

2.3 ∗ 8.854x10−12 F
m

∗ 4π × 10−7 H
m

1.01 × 10−10 F
m

= 2.54 × 10−7 H

m
= 0.254

µH

m

Equation 3-31 on page 93 gives us the equation

Zo =

√

L

C

Thus:

Zo =

√

2.54 × 10−7 H
m

1.01 × 10−10

F

m
= 50.3Ω

Comparing our values with the values published by Belden, we have

Source RDC Capacitance Inductance Impedance

Belden 9.4 Ω
1000ft

= 0.0308 Ω
m

30.8 pF
ft

= 101 pF
m

0.09 µH
ft

= 0.295 µH
m

50 Ω

Calculated 0.0328 Ω
m

101 pF
m

0.254µH
m

50.3 Ω

Therefore, our calculated values are different from the published values by, 6.5%, 0%, -13.9%, and 0.6%
respectively.
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(c) a wire-wrap wire glued to the surface of a PC board, εr = 4.5 and 6 mil dielectric thickness to first
plane layer. (note: 1000 mil = 1 inch)

We will ignore that the line is inhomogeneous.
From (a) we know that the DC resistance of the wire is:

RDC = 0.333
Ω

m

Note: We are ignoring the resistance of the return path, the ground plane, since its resistance is negligible.
Equation 3-6 on page 83 gives us the capacitance equation for a single wire over a ground plane:

Cd =
2πε

ln( 2s
r

)

r = 0.1274 mm s = 0.25mm (half the diameter of the entire wire) + 0.006 in. = (0.25 + 0.1524)mm =
0.402 mm

The electric field lines go through Teflon, the dielectric of the board, and air. We ignore the inhomogeneity
of the dielectric, and take the relative dielectric constant to be that of Teflon.

Thus, ignoring the inhomogeneity of the insulator, we have:

Cd =
2π ∗ 2 ∗ 8.854x10−12 F

m

ln( 2∗0.402mm
0.1274mm

)
= 6.04 × 10−11 F

m
= 60.4

pF

m

Solving for the inductance, we get:

L =
εµ

C
=

2 ∗ 8.854x10−12 F
m

∗ 4π × 10−7 H
m

6.04 × 10−11 F
m

= 3.68 × 10−7 H

m
= 0.368

µH

m

Solving for impedance, we get:

Zo =

√

3.68 × 10−7 H
m

6.04 × 10−11

F

m
= 78.1Ω

3 Problem 3-6 (Dally and Poulton)

Resistive Matching Networks: One can propagate a signal between transmission lines of differing
impedance without reflections by inserting a matching network between the two lines. Consider the sit-
uation in Figure 3-56 where a signal is transmitted first over a 50-Ω line, then a 100-Ω line, then back to a
50-Ω line. (a) Using only resistors, design the networks, N1 and N2, so that there are no reflections from a
wave traveling from left to right. (b) Now modify your design so that it works for a wave traveling in either
direction. (c) How much signal level is lost passing through the two networks? How much signal energy?

Ω50 Ω100 Ω50
N1 N2
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(a) Looking into N1, we want to match the impedance of the 50-Ω transmission line. Thus we want the N1
network in parallel with the 100-Ω transmission line that follows it to equal 50 Ωs.

Thus, we put in a 100-Ω resistor connected to ground for N1. The 100-Ω transistor in parallel with the
100-Ω transmission then look like 50 Ωs to the preceding transmission line.

Similarly, we want N2 and the proceeding 50-Ω transmission line to look like 100 Ωs to match the
preceeding 100-Ω transmission line. Thus, for N2 we put in a 50-Ω series resistor.

N2
Ω50 Ω100 Ω50

N1

Ω50Ω100

(b)
Now, we solve for no reflections in the forward and reverse directions:
For the first network, we need N1 and the 100-Ω transmission line to look like 50 Ωs (as before). But

now we also require that N1 and the 50-Ω transmission line (looking in the reverse direction) look like 100
Ωs.

If we put a resistor connected to ground, R1, followed by a series resistance, R2, we can solve for their
values given the above constraints, namely:

(R1 + 100Ω)//R2 =
1

1
R1+100Ω + 1

R2

= 50Ω

R1 + (R2//50Ω) = 100Ω; thus,
(R1 + 100Ω)R2

R1 + R2 + 100Ω
= 50Ω

Solving these two equations simultaneously we get:

R1 = R2 =
√

5000 = 70.7Ω

And since N1 and N2 are symmetric, we have the symmetric circuit for N2.

N2

Ω50 Ω100 Ω50

N1

Ω71

Ω71Ω71

Ω71

(c)

We will solve for the signal levels in the forward direction. For the current, the current continuing onto
the 100 Ω transmission line is:

iN1 =
70.7Ω

70.7Ω + 70.7Ω + 100Ω
∗ ioriginal = 0.292 ∗ ioriginal
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N2

Ω50 Ω100 Ω50

N1

Ω71

Ω71Ω71

Ω71

Voriginal
ioriginal

VN1
iN1

VN2
iN2

The current then continuing onto the final 50-Ω transmission line is:

iN2 =
70.7Ω

70.7Ω + 50Ω
∗ iN1 = 0.586 ∗ iN1 = 0.586 ∗ (0.292 ∗ ioriginal) = 0.172ioriginal

For the voltage, we have VN1, the voltage at the beginning of the 100-Ω transmission line as:

VN1 =
100Ω

100Ω + 70.7Ω
∗ Voriginal = 0.586 ∗ Voriginal

The voltage at the beginning of the final 50-Ω transmission line is then:

VN2 =
(50Ω//70.7Ω)

70.7Ω + (50Ω//70.7Ω)
∗ VN1 =

29.3Ω

70.7Ω + 29.3Ω
∗ VN1 = 0.292 ∗ VN1 = 0.172 ∗ Voriginal

Thus, only 17.2% of our original signal is left after passing through the two networks. Thus, there is an
82.8% signal loss. We note that, since the network is symmetric, the voltage and current loss is the same.

It follows that the signal energy left after passing through the two networks is:

P = i ∗ v = (0.177ioriginal) ∗ (0.177Voriginal) = 0.03 ∗ ioriginalVoriginal = 0.03Poriginal

Thus, we lose 97.1% of our signal energy passing through the two networks.
Since the network is symmetric, the signal level and signal losses will be the same in either direction.

SignalLevelLoss = 82.8% EnergyLoss = 97.1%


